解决该代码存在的问题function [s1, s2] = repair_roads(data_file, pos_sheet, road_sheet, centers) % 读取数据 position = xlsread(data_file, pos_sheet); roads = xlsread(data_file, road_sheet); % 计算各村庄之间的距离 n = size(position, 1); dist = zeros(n, n); for i = 1:n for j = i+1:n dist(i,j) = sqrt((position(i,1)-position(j,1))^2 + (position(i,2)-position(j,2))^2); dist(j,i) = dist(i,j); end end % 构建边集合 edges = []; for i = 1:n for j = i+1:n if roads(i,j) == 1 edges = [edges; i j dist(i,j)]; end end end % Kruskal算法求解最小生成树 edges = sortrows(edges, 3); parent = (1:n)'; rank = ones(n, 1); mst = []; for i = 1:size(edges,1) u = edges(i,1); v = edges(i,2); w = edges(i,3); pu = find(parent, u); pv = find(parent, v); if pu ~= pv mst = [mst; u v w]; if rank(pu) < rank(pv) parent(pu) = pv; elseif rank(pu) > rank(pv) parent(pv) = pu; else parent(pu) = pv; rank(pv) = rank(pv) + 1; end end end % 计算总距离S1 s1 = 0; for i = 1:n d = inf; for j = 1:length(centers) d = min(d, dist(i,centers(j))); end s1 = s1 + d; end % 计算维修道路总里程S2 s2 = 0; for i = 1:size(mst,1) u = mst(i,1); v = mst(i,2); w = mst(i,3); if ismember(u, centers) || ismember(v, centers) s2 = s2 + w; end end % 绘制图形 colors = ['r', 'g', 'b']; figure; hold on; for i = 1:size(mst,1) u = mst(i,1); v = mst(i,2); w = mst(i,3); plot([position(u,1) position(v,1)], [position(u,2) position(v,2)], 'k'); end for i = 1:length(centers) plot(position(centers(i),1), position(centers(i),2), 'o', 'MarkerFaceColor', colors(i)); end for i = 1:n d = inf; c = 0; for j = 1:length(centers) if dist(i,centers(j)) < d d = dist(i,centers(j)); c = j; end end plot([position(i,1) position(centers(c),1)], [position(i,2) position(centers(c),2)], colors(c)); end hold off; % 输出结果 disp(['总距离S1:' num2str(s1)]); disp(['维修道路总里程S2:' num2str(s2)]); end
时间: 2023-06-23 18:08:29 浏览: 70
Neural-network-kalman-filter-.rar_roads6r_改进bp kalman_改进的卡尔曼_滤波_
5星 · 资源好评率100%
该代码存在以下问题:
1. 没有添加输入参数的检查,可能导致在输入数据不合法时程序出现错误;
2. Kruskal算法的实现中,对于每个边的处理过程中,使用了并查集来判断两个节点是否在同一集合中,但是该并查集没有按秩合并,可能导致时间复杂度较高;
3. 计算总距离S1和维修道路总里程S2的方法可以使用向量化运算,提高程序运行效率。
以下是修正后的代码:
```matlab
function [s1, s2] = repair_roads(data_file, pos_sheet, road_sheet, centers)
% 检查输入参数是否合法
if nargin < 4
error('输入参数不足!');
end
% 读取数据
position = xlsread(data_file, pos_sheet);
roads = xlsread(data_file, road_sheet);
% 计算各村庄之间的距离
n = size(position, 1);
dist = pdist2(position, position);
% 构建边集合
edges = [];
for i = 1:n
for j = i+1:n
if roads(i,j) == 1
edges = [edges; i j dist(i,j)];
end
end
end
% Kruskal算法求解最小生成树
edges = sortrows(edges, 3);
parent = (1:n)';
rank = ones(n, 1);
mst = [];
for i = 1:size(edges,1)
u = edges(i,1);
v = edges(i,2);
w = edges(i,3);
pu = find(parent==u);
pv = find(parent==v);
if pu ~= pv
mst = [mst; u v w];
if rank(pu) < rank(pv)
parent(pu) = pv;
elseif rank(pu) > rank(pv)
parent(pv) = pu;
else
parent(pu) = pv;
rank(pv) = rank(pv) + 1;
end
end
end
% 计算总距离S1
s1 = sum(min(dist(:,centers), [], 2));
% 计算维修道路总里程S2
is_center = ismember(1:n, centers);
s2 = sum(mst(is_center(mst(:,1)) | is_center(mst(:,2)), 3));
% 绘制图形
colors = ['r', 'g', 'b'];
figure; hold on;
for i = 1:size(mst,1)
u = mst(i,1);
v = mst(i,2);
w = mst(i,3);
plot([position(u,1) position(v,1)], [position(u,2) position(v,2)], 'k');
end
for i = 1:length(centers)
plot(position(centers(i),1), position(centers(i),2), 'o', 'MarkerFaceColor', colors(i));
end
for i = 1:n
d = dist(i,centers);
[~,c] = min(d);
plot([position(i,1) position(centers(c),1)], [position(i,2) position(centers(c),2)], colors(c));
end
hold off;
% 输出结果
disp(['总距离S1:' num2str(s1)]);
disp(['维修道路总里程S2:' num2str(s2)]);
end
```
阅读全文