import pandas as pd # 读取excel文件 df = pd.read_excel('example.xlsx') # 对每列数据进行降序排序 df = df.apply(lambda x: x.sort_values(ascending=False).values) # 循环处理每列数据 for col in df.columns: # 创建条件筛选器,这里示范的是筛选大于等于90的数据 condition = df[col] >= 90 # 将符合条件的数据突出显示 df.loc[condition, col] = f'<span style="background-color: yellow">{df[col][condition]}</span>' # 保存到新的excel文件中 df.to_excel('sorted_and_filtered.xlsx', index=False)

时间: 2024-04-04 22:35:32 浏览: 64
这段代码的作用是读取名为 "example.xlsx" 的 Excel 文件,并对每列数据进行降序排序,然后循环处理每列数据,将满足条件(大于等于90)的数据突出显示,最后将处理后的数据保存到名为 "sorted_and_filtered.xlsx" 的新 Excel 文件中。其中,使用了 Pandas 库对 Excel 文件进行读取和处理,使用了 apply() 和 loc[] 方法对每列数据进行处理和筛选。
相关问题

import pandas as pd from PyQt5.QtWidgets import QApplication, QTableView, QMainWindow, QVBoxLayout, QWidget class ExcelViewer(QMainWindow): def __init__(self, file_path): super().__init__() # 读取 Excel 文件并将其转换为 pandas DataFrame 对象 self.df = pd.read_excel(file_path) # 创建 QTableView 组件并将其设置为中心窗口部件 self.table_view = QTableView() self.setCentralWidget(self.table_view) # 将 DataFrame 数据设置为表格模型并在 QTableView 中显示 model = pdTableModel(self.df) self.table_view.setModel(model) class pdTableModel(QtCore.QAbstractTableModel): def __init__(self, data): super().__init__() self._data = data def data(self, index, role): if role == QtCore.Qt.DisplayRole: return str(self._data.iloc[index.row(), index.column()]) def rowCount(self, index): return self._data.shape[0] def columnCount(self, index): return self._data.shape[1] if __name__ == '__main__': app = QApplication([]) excel_viewer = ExcelViewer('example.xlsx') excel_viewer.show() app.exec_()帮我修改成按查询按钮显示Excel

好的,以下是修改后的代码,添加了一个查询按钮和一个槽函数,点击查询按钮后会弹出一个文件选择窗口,用户选择Excel文件后,程序会读取该文件并在主窗口中显示: ``` import pandas as pd from PyQt5.QtWidgets import QApplication, QTableView, QMainWindow, QVBoxLayout, QWidget, QPushButton, QFileDialog from PyQt5 import QtCore class ExcelViewer(QMainWindow): def __init__(self): super().__init__() self.df = None # 初始值为 None self.table_view = QTableView() self.setCentralWidget(self.table_view) self.initUI() def initUI(self): self.setWindowTitle("Excel Viewer") self.resize(800, 600) # 添加查询按钮 self.button = QPushButton("查询", self) self.button.setGeometry(QtCore.QRect(340, 20, 80, 30)) self.button.clicked.connect(self.selectExcel) def selectExcel(self): # 弹出文件选择窗口 file_path, _ = QFileDialog.getOpenFileName(self, "选择Excel文件", "", "Excel Files (*.xlsx *.xls)") if file_path: # 读取 Excel 文件并将其转换为 pandas DataFrame 对象 self.df = pd.read_excel(file_path) # 将 DataFrame 数据设置为表格模型并在 QTableView 中显示 model = pdTableModel(self.df) self.table_view.setModel(model) class pdTableModel(QtCore.QAbstractTableModel): def __init__(self, data): super().__init__() self._data = data def data(self, index, role): if role == QtCore.Qt.DisplayRole: return str(self._data.iloc[index.row(), index.column()]) def rowCount(self, index): return self._data.shape[0] def columnCount(self, index): return self._data.shape[1] if __name__ == '__main__': app = QApplication([]) excel_viewer = ExcelViewer() excel_viewer.show() app.exec_() ``` 注意事项: 1. `ExcelViewer` 类的构造函数中不再接收 `file_path` 参数,因为文件路径是在点击查询按钮后由用户选择的。 2. `ExcelViewer` 类中添加了一个 `selectExcel` 槽函数,用于响应用户点击查询按钮的事件。 3. `selectExcel` 槽函数通过调用 `QFileDialog.getOpenFileName` 方法弹出文件选择窗口,让用户选择 Excel 文件。 4. `selectExcel` 槽函数读取用户选择的 Excel 文件并将其转换为 pandas DataFrame 对象,如果读取成功则将其在主窗口中显示。

Add comments to my code below and return,import pandas as pd import jieba from gensim import corpora, models, similarities # 读取Excel表格数据 df = pd.read_excel(r'D:\pycharm_project\excel_column_similar\cosmic核减率分析\excel_test_clean.xlsx') # 使用jieba进行分词,并去除停用词 stop_words = {'的', '了', '是', '我', '你', '他', '她', '(', ')'} texts = [] for text in df['子过程描述']: words = [word for word in jieba.cut(text) if word not in stop_words] texts.append(words) print(texts) # 构建词典和文档向量 dictionary = corpora.Dictionary(texts) corpus = [dictionary.doc2bow(text) for text in texts] print(corpus) # 计算TF-IDF特征向量 tfidf = models.TfidfModel(corpus) corpus_tfidf = tfidf[corpus] print(tfidf) print(corpus_tfidf) # 计算相似度 index = similarities.MatrixSimilarity(corpus_tfidf) similarity_matrix = index[corpus_tfidf] print(index) print(similarity_matrix.shape) # 标注相似度大于0.75的单元格 for i in range(similarity_matrix.shape[0]): for j in range(i + 1, similarity_matrix.shape[1]): if similarity_matrix[i, j] > 0.75: df.at[i, '子过程描述'] = str(df.at[i, '子过程描述']) + ' (' + str(round(similarity_matrix[i, j], 2)) + ')' df.at[j, '子过程描述'] = str(df.at[j, '子过程描述']) + ' (' + str(round(similarity_matrix[i, j], 2)) + ')' # 保存结果到Excel表格 df.to_excel(r'example_similarity.xlsx', index=False)

下面是代码的注释: ```python import pandas as pd import jieba from gensim import corpora, models, similarities # 读取Excel表格数据 df = pd.read_excel(r'D:\pycharm_project\excel_column_similar\cosmic核减率分析\excel_test_clean.xlsx') # 使用jieba进行分词,并去除停用词 stop_words = {'的', '了', '是', '我', '你', '他', '她', '(', ')'} texts = [] for text in df['子过程描述']: words = [word for word in jieba.cut(text) if word not in stop_words] texts.append(words) print(texts) # 构建词典和文档向量 dictionary = corpora.Dictionary(texts) corpus = [dictionary.doc2bow(text) for text in texts] print(corpus) # 计算TF-IDF特征向量 tfidf = models.TfidfModel(corpus) corpus_tfidf = tfidf[corpus] print(tfidf) print(corpus_tfidf) # 计算相似度 index = similarities.MatrixSimilarity(corpus_tfidf) similarity_matrix = index[corpus_tfidf] print(index) print(similarity_matrix.shape) # 标注相似度大于0.75的单元格 for i in range(similarity_matrix.shape[0]): for j in range(i + 1, similarity_matrix.shape[1]): if similarity_matrix[i, j] > 0.75: df.at[i, '子过程描述'] = str(df.at[i, '子过程描述']) + ' (' + str(round(similarity_matrix[i, j], 2)) + ')' df.at[j, '子过程描述'] = str(df.at[j, '子过程描述']) + ' (' + str(round(similarity_matrix[i, j], 2)) + ')' # 保存结果到Excel表格 df.to_excel(r'example_similarity.xlsx', index=False) ``` 注释中解释了每个步骤的作用: 1. 读取Excel表格数据,保存到dataframe对象df中。 2. 使用jieba对子过程描述列进行分词,并去除停用词。 3. 使用gensim中的Dictionary类构建词典,并将分词后的文本转换为文档向量。 4. 使用TF-IDF模型计算词语的权重,并得到TF-IDF特征向量。 5. 使用MatrixSimilarity计算文本之间的相似度,并保存到相似度矩阵中。 6. 遍历相似度矩阵,将相似度大于0.75的单元格标注出来。 7. 将结果保存到新的Excel表格中。
阅读全文

相关推荐

最新推荐

recommend-type

Pandas读取csv时如何设置列名

Pandas能够方便地读取和写入多种格式的数据文件,其中CSV(Comma Separated Values)是最常见的数据存储格式之一。本篇将详细介绍如何在使用Pandas读取CSV文件时设置列名。 1. **CSV文件自带列标题** 当CSV文件中...
recommend-type

(179979052)基于MATLAB车牌识别系统【带界面GUI】.zip

基于MATLAB车牌识别系统【带界面GUI】.zip。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能
recommend-type

C#怎么把图片存入名为当前日期的文件夹里

在C#中,你可以通过`System.IO`命名空间下的`Directory`和`File`类来创建并存储图片到包含当前日期的文件夹里。以下是一个简单的示例: ```csharp using System; using System.IO; public void SaveImageToTodayFolder(string imagePath, string imageName) { // 获取当前日期 DateTime currentDate = DateTime.Now; string folderPath = Path.Combine(Environment.C