帮我优化这个代码,必须要降低运算量,多采用dataframe或者其他库 import random filename = 'supercu.lmp' file_object = open(filename,'r') lines = file_object.readlines() num_layers = 150 num_atom_a_layer = 20000 idx_gradient = 0.1 num_random = [] for idx_layer in range(1,num_layers+1): num_cu_float = pow(idx_layer/num_layers,idx_gradient)*num_atom_a_layer num_cu = int(num_cu_float) list_random = random.sample(range((idx_layer-1)*num_atom_a_layer,idx_layer*num_atom_a_layer),num_cu) num_random = num_random + list_random num_random.sort() for index in range (len(lines)): strT = lines[index] strL = strT.split() if int(strL[0]) in num_random: strT = strT[:14]+'2'+strT[15:] lines[index] = strT file_object.close strTT = "".join(lines) file_object = open(filename,'w') file_object.write(strTT) file_object.close
时间: 2024-03-10 18:44:58 浏览: 66
可以尝试使用Pandas库来优化代码,使用DataFrame来处理数据,以减少循环和运算量。
以下是使用Pandas库优化后的代码:
```
import pandas as pd
import random
filename = 'supercu.lmp'
df = pd.read_csv(filename, sep=' ', header=None, skiprows=9, names=['atom', 'x', 'y', 'z'])
num_layers = 150
num_atom_a_layer = 20000
idx_gradient = 0.1
num_random = []
for idx_layer in range(1, num_layers+1):
num_cu_float = pow(idx_layer/num_layers, idx_gradient)*num_atom_a_layer
num_cu = int(num_cu_float)
list_random = random.sample(range((idx_layer-1)*num_atom_a_layer, idx_layer*num_atom_a_layer), num_cu)
num_random = num_random + list_random
df.loc[num_random, 'atom'] = 2
with open(filename, 'w') as file_object:
file_object.write(''.join([''.join(row.astype(str)) + '\n' for _, row in df.iterrows()]))
```
首先使用Pandas的read_csv函数将文件读入DataFrame中,skiprows参数用于跳过前9行不需要的数据,names参数用于指定列名。
然后使用loc方法将对应随机数的行的atom列的值更新为2。
最后使用iterrows方法遍历DataFrame,将每一行转换为字符串并写入文件中。
这样可以减少循环和运算量,提高代码的效率。
阅读全文