trace = np.trace(dcm)这是什么意思
时间: 2024-04-26 22:23:00 浏览: 105
`np.trace(dcm)` 是 NumPy 库中的一个函数,用于计算矩阵的迹。矩阵的迹定义为矩阵对角线上各项的和。对于一个 $3 \times 3$ 的矩阵,其迹可以表示为:
$$\text{tr}(\mathbf{M}) = M_{11} + M_{22} + M_{33}$$
在上面的代码示例中,我们使用 `np.trace(dcm)` 计算了方位余弦阵 `dcm` 的迹,以便判断其是否大于 $0$。根据四元数的计算公式,当方位余弦阵的迹大于 $0$ 时,可以直接计算四元数的 $w, x, y, z$ 值;当迹不大于 $0$ 时,需要按照特定的方式计算四元数的 $w, x, y, z$ 值。
相关问题
def findContours(path,isPlot=False): dcmSOPs = findSOPs(path) #path,rtFile = os.path.split(rvFileName) paths = list(map(str,path.split("\\"))) patient = paths[3] time = paths[4] rvFile = path+'\\RS.{}'.format(patient)+'.CT_{}%.dcm'.format(time) ds = pydicom.dcmread(rvFile) contours = ds.ROIContourSequence dcmFile = path+'\\CT.{}'.format(patient)+'.Image {}.dcm'.format(str(int(1))) ds = pydicom.dcmread(dcmFile) dcmOrigin = ds.ImagePositionPatient dcmSpacing = ds.PixelSpacing # GTV 为第二个轮廓 numberOfContours = len(contours[1].ContourSequence) cuts = [] # 找出包含GTV的CT minXY = 600 maxXY = -1 for k in range(0,numberOfContours): rfContent = contours[1].ContourSequence[k] # 读取该靶区所在CT切片的信息 dcmUID = rfContent.ContourImageSequence[0].ReferencedSOPInstanceUID #print(numberOfContours,len(dcmSOPs),dcmUID) #print(k,dcmSOPs.index(dcmUID)) cuts.append(dcmSOPs.index(dcmUID)) numberOfPoints = rfContent.NumberOfContourPoints # 该层靶区曲线点数 conData = np.zeros((numberOfPoints,3)) # 存储靶区曲线各点的世界坐标 pointData = np.zeros((numberOfPoints,2)) # 存储靶区曲线各点的网格体素坐标 #将靶区勾画的曲线坐标由世界坐标系转换为网格体素坐标 for jj in range(0,numberOfPoints): ii = jj*3 conData[jj,0] = rfContent.ContourData[ii+0] #轮廓世界坐标系 conData[jj,1] = rfContent.ContourData[ii+1] conData[jj,2] = rfContent.ContourData[ii+2] pointData[jj,0] = round( (conData[jj,0] - dcmOrigin[0])/dcmSpacing[0] ) #轮廓X坐标 pointData[jj,1] = round( (conData[jj,1] - dcmOrigin[1])/dcmSpacing[1] ) #轮廓Y坐标 minX = np.min(pointData[:,0]) maxX = np.max(pointData[:,0]) minY = np.min(pointData[:,1]) maxY = np.max(pointData[:,1]) if minXY>minX: minXY = minX elif minXY>minY: minXY = minY elif maxXY<maxX: maxXY = maxX elif maxXY<maxY: maxXY = maxY #print('minXY={}'.format(minXY),'maxXY={}'.format(maxXY)) cuts = np.array(cuts) writeToFile(cuts,path+'\\GTV_indexs.txt') return minXY,maxXY,cuts
这段代码是用于在一个 DICOM 数据集中找到包含某个轮廓的 CT 切片,并将这些切片的索引写入文件中。其中,输入参数 `path` 是 DICOM 数据集的路径,`isPlot` 参数表示是否需要画出 CT 切片和轮廓,函数返回值是一个元组,包含了所有包含轮廓的 CT 切片的最小和最大索引,以及这些 CT 切片的索引列表。
具体实现上,该函数首先通过 `findSOPs()` 函数找到 DICOM 数据集中所有的 SOPInstanceUID,然后读取包含轮廓的靶区的信息,找出这些轮廓所在的 CT 切片的索引,并计算出所有 CT 切片的尺寸范围。最后,将包含轮廓的 CT 切片的索引写入文件中。
检查下面代码:import pydicom import numpy as np # 加载DICOM图像 ds = pydicom.dcmread('11.dcm') # 获取图像数据 img = ds.pixel_array # 获取标记数据 overlay_data = ds.OverlayData overlay_rows = ds.OverlayRows overlay_cols = ds.OverlayColumns # 将标记数据转换为numpy数组 overlay_data = np.frombuffer(overlay_data, dtype=np.uint8) overlay_data = overlay_data.reshape((overlay_rows, overlay_cols)) # 将标记的位置信息与图像数据进行合并。可以使用Pillow库中的Image.fromarray()函数将图像数据转换为PIL图像对象,并使用PIL图像对象的paste()函数将标记的位置覆盖为背景色。 # 复制 from PIL import Image # 将图像数据转换为PIL图像对象 img_pil = Image.fromarray(img) # 获取标记的位置信息 # 在示例图像中,标记的值为1 mask = overlay_data == 1 x, y = np.where(mask) # 将标记的位置覆盖为背景色 bg_color = 255 # 背景色为白色 for x_, y_ in zip(x, y): img_pil.putpixel((y_, x_), bg_color) # 将处理后的图像转换为numpy数组 img_cleaned = np.array(img_pil) # 创建新的PixelData元素 new_pixel_data = pydicom.dataelem.DataElement( 0x7fe00010, 'OW', img_cleaned.tobytes()) # 替换原来的PixelData元素 ds.PixelData = new_pixel_data # 保存处理后的图像 ds.save_as('example_cleaned.dcm')
这段代码的作用是读取一个 DICOM 图像文件,并将其中的标记数据覆盖为背景色。具体的实现过程如下:
1. 使用 `pydicom` 库的 `dcmread` 函数读取 DICOM 图像数据,将其存储在 `ds` 对象中。
2. 从 `ds` 对象中获取图像数据,存储在 `img` 变量中。
3. 从 `ds` 对象中获取标记数据,存储在 `overlay_data` 变量中。
4. 将 `overlay_data` 数组转换为numpy数组,并将其形状重新调整为 `(overlay_rows, overlay_cols)`。
5. 将标记的位置信息与图像数据进行合并。先将图像数据转换为PIL图像对象,然后使用PIL图像对象的 `putpixel` 函数将标记的位置覆盖为背景色。
6. 将处理后的图像转换为numpy数组,并创建新的 `PixelData` 元素。
7. 使用 `pydicom` 库的 `save_as` 函数将处理后的图像数据保存为新的 DICOM 文件。
需要注意的是,本段代码中的标记信息是二进制数据,需要先将其转换为numpy数组才能进行后续处理。另外,该代码中的标记信息只处理了值为1的像素,如果标记信息中还有其他像素值需要处理,可以根据实际情况进行修改。
阅读全文