convert tf.reshape to pytorch
时间: 2023-10-21 15:04:58 浏览: 148
To convert `tf.reshape` to PyTorch, you can use the `view` method in PyTorch. Here's an example:
```python
# TensorFlow code:
import tensorflow as tf
x = tf.constant([[1, 2], [3, 4], [5, 6]])
y = tf.reshape(x, [2, 3])
# PyTorch equivalent:
import torch
x = torch.tensor([[1, 2], [3, 4], [5, 6]])
y = x.view(2, 3)
```
In this example, `x` is a 3x2 tensor, and `y` is the reshaped tensor with shape 2x3. The `view` method in PyTorch works similarly to `tf.reshape` in TensorFlow.
相关问题
import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras import layers import bert import numpy as np from transformers import BertTokenizer, BertModel # 设置BERT模型的路径和参数 bert_path = "E:\\AAA\\523\\BERT-pytorch-master\\bert1.ckpt" max_seq_length = 128 train_batch_size = 32 learning_rate = 2e-5 num_train_epochs = 3 # 加载BERT模型 def create_model(): input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask") segment_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="segment_ids") bert_layer = hub.KerasLayer(bert_path, trainable=True) pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) output = layers.Dense(1, activation='sigmoid')(pooled_output) model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=output) return model # 准备数据 def create_input_data(sentences, labels): tokenizer = bert.tokenization.FullTokenizer(vocab_file=bert_path + "trainer/vocab.small", do_lower_case=True) # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') input_ids = [] input_masks = [] segment_ids = [] for sentence in sentences: tokens = tokenizer.tokenize(sentence) tokens = ["[CLS]"] + tokens + ["[SEP]"] input_id = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_id) segment_id = [0] * len(input_id) padding_length = max_seq_length - len(input_id) input_id += [0] * padding_length input_mask += [0] * padding_length segment_id += [0] * padding_length input_ids.append(input_id) input_masks.append(input_mask) segment_ids.append(segment_id) return np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels) # 加载训练数据 train_sentences = ["Example sentence 1", "Example sentence 2", ...] train_labels = [0, 1, ...] train_input_ids, train_input_masks, train_segment_ids, train_labels = create_input_data(train_sentences, train_labels) # 构建模型 model = create_model() model.compile(optimizer=tf.keras.optimizers.Adam(lr=learning_rate), loss='binary_crossentropy', metrics=['accuracy']) # 开始微调 model.fit([train_input_ids, train_input_masks, train_segment_ids], train_labels, batch_size=train_batch_size, epochs=num_train_epochs)这段代码有什么问题吗?
这段代码存在一些问题:
1. `bert_path` 的值不应该是 ".ckpt" 结尾的文件路径,而是BERT模型的目录路径,例如:`bert_path = "E:\\AAA\\523\\BERT-pytorch-master\\"`。
2. `vocab_file` 参数应该是BERT模型目录下的 "vocab.txt" 文件路径,而不是训练器目录下的 "vocab.small" 文件路径。例如:`tokenizer = bert.tokenization.FullTokenizer(vocab_file=bert_path + "vocab.txt", do_lower_case=True)`。
3. `create_input_data` 函数中的 `tokenizer` 对象应该是从 `BertTokenizer` 类中导入的。因此,需要将 `from transformers import BertTokenizer` 加入代码开头,并使用 `BertTokenizer.from_pretrained()` 函数来加载BERT的tokenizer。
4. `train_sentences` 和 `train_labels` 应该是训练数据集,但是在代码中缺失了这些数据的定义和加载。
5. `create_input_data` 函数返回的 `labels` 应该是一维的,而不是二维的。因此,需要修改函数 `return` 语句为:`return np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels).reshape(-1)`。
6. 在 `model.fit` 中,需要指定验证集的参数 `validation_data`,以便在训练过程中评估模型的性能。
综上所述,以下是修改后的代码示例:
```
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow.keras import layers
import bert
import numpy as np
from transformers import BertTokenizer, BertModel
# 设置BERT模型的路径和参数
bert_path = "E:\\AAA\\523\\BERT-pytorch-master\\"
max_seq_length = 128
train_batch_size = 32
learning_rate = 2e-5
num_train_epochs = 3
# 加载BERT模型
def create_model():
input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids")
input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask")
segment_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="segment_ids")
bert_layer = hub.KerasLayer(bert_path, trainable=True)
pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids])
output = layers.Dense(1, activation='sigmoid')(pooled_output)
model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=output)
return model
# 准备数据
def create_input_data(sentences, labels):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
input_ids = []
input_masks = []
segment_ids = []
for sentence in sentences:
tokens = tokenizer.tokenize(sentence)
tokens = ["[CLS]"] + tokens + ["[SEP]"]
input_id = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_id)
segment_id = [0] * len(input_id)
padding_length = max_seq_length - len(input_id)
input_id += [0] * padding_length
input_mask += [0] * padding_length
segment_id += [0] * padding_length
input_ids.append(input_id)
input_masks.append(input_mask)
segment_ids.append(segment_id)
return np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels).reshape(-1)
# 加载训练数据
train_sentences = ["Example sentence 1", "Example sentence 2", ...]
train_labels = [0, 1, ...]
train_input_ids, train_input_masks, train_segment_ids, train_labels = create_input_data(train_sentences, train_labels)
# 构建模型
model = create_model()
model.compile(optimizer=tf.keras.optimizers.Adam(lr=learning_rate),
loss='binary_crossentropy',
metrics=['accuracy'])
# 开始微调
model.fit([train_input_ids, train_input_masks, train_segment_ids], train_labels,
batch_size=train_batch_size,
epochs=num_train_epochs,
validation_data=([val_input_ids, val_input_masks, val_segment_ids], val_labels))
```
不使用pytorch自带的dataloader加载cifar10的代码
以下是使用TensorFlow加载CIFAR-10数据集的示例代码:
```python
import tensorflow as tf
import numpy as np
import os
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
def load_data(data_dir):
train_data = np.empty((50000, 32, 32, 3), dtype='uint8')
train_labels = np.empty((50000,), dtype='uint8')
for i in range(1, 6):
data_dict = unpickle(os.path.join(data_dir, 'data_batch_%d' % i))
train_data[(i - 1) * 10000:i * 10000, :, :, :] = data_dict[b'data'].reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1)
train_labels[(i - 1) * 10000:i * 10000] = data_dict[b'labels']
test_data_dict = unpickle(os.path.join(data_dir, 'test_batch'))
test_data = test_data_dict[b'data'].reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1)
test_labels = np.array(test_data_dict[b'labels'])
return train_data, train_labels, test_data, test_labels
data_dir = '/path/to/cifar-10-batches-py'
train_data, train_labels, test_data, test_labels = load_data(data_dir)
# Normalize the data
train_data = train_data.astype('float32') / 255
test_data = test_data.astype('float32') / 255
# Convert labels to one-hot encoding
train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10)
test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10)
# Define the model
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
# Compile the model
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# Train the model
model.fit(train_data, train_labels, epochs=10, batch_size=64, validation_data=(test_data, test_labels))
```
这段代码使用了NumPy和TensorFlow库来加载CIFAR-10数据集,并使用卷积神经网络对图像进行分类。
阅读全文