采用邻接矩阵存储构造无向图

时间: 2023-10-05 13:11:03 浏览: 53
邻接矩阵是一种用于表示图的数据结构,它可以用来存储有向图或无向图。对于无向图,我们可以采用邻接矩阵来存储它。 邻接矩阵是一个二维数组,其中第 i 行第 j 列表示顶点 i 和 j 之间是否有一条边。如果有,则该位置的值为 1,否则为 0。对于无向图,由于边是双向的,因此邻接矩阵是对称的。 下面是一个存储无向图的邻接矩阵的示例: ``` 1 2 3 4 5 1 0 1 1 0 1 2 1 0 0 1 0 3 1 0 0 1 1 4 0 1 1 0 1 5 1 0 1 1 0 ``` 在这个例子中,共有五个顶点,分别编号为 1、2、3、4 和 5。第 i 行第 j 列的值为 1,表示顶点 i 和 j 之间有一条边;如果为 0,则表示它们之间没有边。例如,第 1 行第 2 列和第 5 行第 1 列的值均为 1,表示顶点 1 和 2、顶点 5 和 1 之间都有一条边。 这种存储方式的优点是可以快速地检查两个顶点之间是否有边,时间复杂度为 O(1);缺点是占用空间较大,需要 O(n^2) 的空间来存储。此外,当图中的边比较稀疏时,邻接矩阵的效率会降低,因为大部分空间都被浪费了。
相关问题

用邻接矩阵存储结构创建无向图

创建无向图的邻接矩阵存储结构需要以下步骤: 1.定义一个结构体来表示图的邻接矩阵存储结构,包括顶点数vexnum、边数arcnum和邻接矩阵arcs。 2.根据输入的顶点数和边数,动态分配邻接矩阵所需的空间。 3.初始化邻接矩阵,将所有元素初始化为0。 4.根据输入的边信息,更新邻接矩阵。对于无向图,如果有一条边连接了顶点i和顶点j,则邻接矩阵中arcs[i][j]和arcs[j][i]都应该被赋值为该边的权值。 5.创建成功后,返回该图的邻接矩阵存储结构。 以下是一个示例代码: ```c #include <stdio.h> #include <stdlib.h> #define MAX_VERTEX_NUM 100 typedef struct { int vexnum; // 顶点数 int arcnum; // 边数 int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵 } Graph; Graph* createGraph() { Graph* G = (Graph*)malloc(sizeof(Graph)); if (G == NULL) { printf("Memory allocation failed.\n"); return NULL; } printf("Please enter the number of vertices and edges of the graph: "); scanf("%d,%d", &G->vexnum, &G->arcnum); if (G->vexnum <= 0 || G->arcnum <= 0) { printf("Invalid input.\n"); return NULL; } for (int i = 0; i < G->vexnum; i++) { for (int j = 0; j < G->vexnum; j++) { G->arcs[i][j] = 0; } } printf("Please enter the information of each edge in the format of 'v1,v2,weight':\n"); for (int k = 0; k < G->arcnum; k++) { char v1, v2; int weight; scanf(" %c,%c,%d", &v1, &v2, &weight); int i = v1 - 'A'; int j = v2 - 'A'; G->arcs[i][j] = weight; G->arcs[j][i] = weight; } return G; } int main() { Graph* G = createGraph(); if (G != NULL) { printf("The adjacency matrix of the graph is:\n"); for (int i = 0; i < G->vexnum; i++) { for (int j = 0; j < G->vexnum; j++) { printf("%d ", G->arcs[i][j]); } printf("\n"); } } return 0; } ```

设计一个有向图和一个无向图,建立图的邻接矩阵或邻接表的存储结构,完成有向图和无向图的dfs(深度优先遍历)和bfs(广度优先遍历)的操作。(有向图采用邻接矩阵存储,无向图采用邻接表存储)

### 回答1: 有向图邻接矩阵存储结构: 假设有向图有5个顶点,顶点分别为V1、V2、V3、V4、V5,边分别为(V1,V2)、(V1,V4)、(V2,V3)、(V2,V5)、(V3,V4)、(V4,V5),邻接矩阵存储结构如下: V1 V2 V3 V4 V5 V1 1 1 V2 1 1 V3 1 V4 1 V5 有向图dfs操作: 从V1开始遍历,先访问V1,再访问V2,再访问V3,再访问V4,最后访问V5。 有向图bfs操作: 从V1开始遍历,先访问V1,再访问V2,再访问V4,再访问V3,最后访问V5。 无向图邻接表存储结构: 假设无向图有5个顶点,顶点分别为V1、V2、V3、V4、V5,边分别为(V1,V2)、(V1,V4)、(V2,V3)、(V2,V5)、(V3,V4)、(V4,V5),邻接表存储结构如下: V1 -> V2 -> V4 V2 -> V1 -> V3 -> V5 V3 -> V2 -> V4 V4 -> V1 -> V3 -> V5 V5 -> V2 -> V4 无向图dfs操作: 从V1开始遍历,先访问V1,再访问V2,再访问V3,再访问V4,最后访问V5。 无向图bfs操作: 从V1开始遍历,先访问V1,再访问V2,再访问V4,再访问V3,最后访问V5。 ### 回答2: 设计一个有向图和一个无向图的邻接矩阵和邻接表 有向图的邻接矩阵: ``` 1 2 3 4 1 0 1 1 0 2 0 0 1 0 3 0 0 0 1 4 0 0 0 0 ``` 有向图的邻接表: ``` 1->2->3 2->3 3->4 4->null ``` 无向图的邻接矩阵: ``` 1 2 3 4 1 0 1 1 0 2 1 0 1 1 3 1 1 0 0 4 0 1 0 0 ``` 无向图的邻接表: ``` 1->2->3 2->1->3->4 3->1->2 4->2 ``` DFS深度优先遍历(有向图): 按照某个节点开始,访问该节点,递归访问其邻居节点,回溯到上一个节点继续遍历其邻居节点。使用栈实现,先访问的节点先入栈。 算法步骤: 1. 从起点开始遍历,并将其标记为已访问 2. 将该节点入栈 3. 将该节点的邻居节点依次入栈,并递归访问其邻居节点 4. 如果该节点没有邻居节点或其邻居节点都被标记为已访问,则将该节点弹出栈,回溯到上一节点 DFS深度优先遍历(无向图): 与有向图的遍历类似,只是将有向图中的入度和出度改为度数,在遍历时需考虑重复访问的情况。使用栈实现,先访问的节点先入栈。 算法步骤: 1. 从起点开始遍历,并将其标记为已访问 2. 将该节点入栈 3. 将该节点的未访问过的邻居节点依次入栈,并递归访问其邻居节点 4. 如果该节点没有未访问的邻居节点,则将该节点弹出栈,回溯到上一节点 BFS广度优先遍历(有向图): 从一个起点开始遍历,先访问它的邻居节点,再访问邻居节点的邻居节点,以此类推,直至访问完整张图。使用队列实现,先访问的节点先进队列。 算法步骤: 1. 将起点入队,并将其标记为已访问 2. 取出队首节点,并依次访问其未访问的邻居节点,将其标记为已访问,并入队 3. 重复步骤2,直至队列为空 BFS广度优先遍历(无向图): 与有向图的遍历类似,只是将有向图中的入度和出度改为度数,在遍历时需考虑重复访问的情况。使用队列实现,先访问的节点先进队列。 算法步骤: 1. 将起点入队并将其标记为已访问 2. 取出队首节点的未访问过的邻居节点,并依次访问,将其标记为已访问,并入队 3. 重复步骤2,直至队列为空 邻接矩阵和邻接表的存储方式不同,但是深度优先遍历和广度优先遍历的算法思路是相同的,只是数据结构的不同导致了实现的细节有所不同。在实际应用中,对于较大规模的图,邻接表的存储方式更有效率。 ### 回答3: 一、有向图的邻接矩阵存储结构 我们设计一个有向图,表示5个城市之间的直达道路情况,如下所示: 1 -- 2 -- 3 | \/ | | /\ | 4 -- 5 邻接矩阵是有向图的常见存储结构,它用一个二维数组来表示图中各个节点之间的关系。定义邻接矩阵G[i][j]表示从i到j有一条边,则有向图的邻接矩阵为: 1 2 3 4 5 1 0 1 0 1 1 2 0 0 1 0 1 3 0 0 0 0 0 4 0 0 0 0 1 5 0 0 0 0 0 其中,0表示没有边相连,1表示有边相连。 邻接矩阵的优点在于可以快速判断两个节点之间是否存在连通关系,但需要占用大量的存储空间。 有向图的DFS和BFS的实现过程与无向图类似,具体实现方法可参考下面的代码示例。 二、无向图的邻接表存储结构 以同样的城市道路为例,我们可以将这个图构建成无向图,如下所示: 1 -- 2 -- 3 | | | 4 -- 5 | 邻接表是一种常见的无向图存储结构,它是通过链表来表示一个节点的相邻节点的集合。用一个数组来存放所有的节点,每个节点通过一个链表来存储它的所有相邻节点。邻接表的定义如下: ``` struct AdjListNode { int dest; struct AdjListNode* next; }; struct AdjList { struct AdjListNode* head; }; class Graph { int V; struct AdjList* adj; public: Graph(int V) { this->V = V; adj = new AdjList[V]; for(int i=0;i<V;i++) adj[i].head = NULL; } void addEdge(int src, int dest) { AdjListNode* newNode = new AdjListNode; newNode->dest = dest; newNode->next = adj[src].head; adj[src].head = newNode; newNode = new AdjListNode; newNode->dest = src; newNode->next = adj[dest].head; adj[dest].head = newNode; } void BFS(int s); void DFS(int s); }; void Graph::BFS(int s) { bool visited[V]; for(int i=0;i<V;i++) visited[i] = false; queue<int> q; visited[s] = true; q.push(s); while(!q.empty()) { int v = q.front(); cout << v << " "; q.pop(); for(AdjListNode* p = adj[v].head;p != NULL;p=p->next) { int w = p->dest; if(!visited[w]) { visited[w] = true; q.push(w); } } } } void dfs(int v, bool visited[], struct AdjList adj[]) { visited[v] = true; cout << v << " "; for(AdjListNode* p=adj[v].head;p!=NULL;p=p->next) { int w = p->dest; if(!visited[w]) dfs(w,visited,adj); } } void Graph::DFS(int s) { bool visited[V]; for(int i=0;i<V;i++) visited[i] = false; dfs(s,visited,adj); } ``` 至此,我们已经完成了无向图的DFS和BFS的实现过程。通过邻接表可以大大节省存储空间,但查找是否存在连通关系时要遍历链表,耗时较长。

相关推荐

最新推荐

recommend-type

邻接表或者邻接矩阵为存储结构实现连通无向图的深度优先和广度优先遍历

程序设计任务: 设计一个程序,实现以邻接表或者邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。基本要求:以邻接表或者邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的...
recommend-type

C语言实现图的邻接矩阵存储操作

C语言实现图的邻接矩阵存储...* 图的种类标志(有向图和无向图) * 顶点和弧的表示和操作 总结 本文详细介绍了使用C语言实现图的邻接矩阵存储操作的方法和代码实现,旨在帮助读者更好地理解邻接矩阵的存储和操作。
recommend-type

C++实现图的邻接矩阵表示

邻接矩阵的使用可以简化图的存储和操作。 二、C++实现图的邻接矩阵表示 在C++中,我们可以使用模板类来实现图的邻接矩阵表示。首先,我们定义一个模板类 GraphMatrix,template , class E&gt;,其中T表示顶点的类型,...
recommend-type

假设图中数据元素类型是字符型,请采用邻接矩阵或邻接表实现图的以下基本操作: (1)构造图(包括有向图、有向网、无向图、无向网); (2)根据深度优先遍历图。

有向和无向的区别:有向直接标出谁指向谁,无向是有向的特例,,v2&gt;有弧,说明,v1&gt;也有弧。 构图: ① 确定顶点数,弧数,是否有权值 ② 输入每个顶点,弧&lt;弧尾,弧头&gt;,权值 ③ 若是无向,则需实现弧,v1&gt;与,v2&gt;的...
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依