bp神经网络pid控制倒立摆

时间: 2023-09-17 19:06:56 浏览: 41
BP神经网络可以用于设计PID控制器的参数,以实现倒立摆的控制。具体步骤如下: 1. 收集数据:需要用传感器测量倒立摆的位置和速度,同时记录控制器的输出信号。收集的数据用于训练BP神经网络。 2. 设计神经网络:神经网络的输入是倒立摆的位置和速度,输出是控制器的输出信号。可以根据倒立摆的性质和控制要求,设计合适的网络结构和参数。 3. 训练神经网络:将收集的数据分为训练集和验证集,使用反向传播算法训练BP神经网络。训练的目标是使神经网络的输出与实际控制器的输出尽可能接近。 4. 调整PID参数:将神经网络的输出作为PID控制器的参数,根据需要调整PID参数,使倒立摆能够稳定地保持在目标位置。 5. 测试控制效果:使用测试集验证控制器的效果,如果控制效果不理想,可以重新训练神经网络或调整PID参数。 需要注意的是,倒立摆的控制是一个复杂的过程,需要综合考虑多个因素,如传感器噪声、控制器的响应速度等,才能设计出稳定可靠的控制器。
相关问题

bp神经网络pid控制

### 回答1: BP神经网络PID控制是一种集成了BP神经网络和PID控制的智能控制方法。这种控制方法结合了BP神经网络的非线性建模能力和PID控制器的良好调节能力,可以实现系统的精确控制。在控制过程中,BP神经网络负责建模和预测系统的状态和行为,而PID控制器则负责根据误差调节系统的控制量。 BP神经网络通过学习系统的输入输出数据,对系统进行建模,并预测系统状态。随着网络的学习,其预测能力不断增强,可以更加准确地反映系统的状态和行为。 而PID控制器则根据系统输出与目标值之间的误差,调节系统的控制量。PID控制器具有良好的调节能力和响应速度,可以快速地调整系统的控制量,使系统保持在稳定控制状态下。 将BP神经网络与PID控制器相结合,可实现更加智能、精确的控制。该方法能够应用于众多领域,如机器人控制、工业过程控制、智能交通控制等。 ### 回答2: BP神经网络是一种常用的人工神经网络。它可以通过训练来实现对非线性关系的建模和预测。PID控制器是一种经典的控制方法,它通过计算当前误差、误差的积分和误差的微分来实现对系统的控制。PID控制器具有简单、快速、鲁棒性好等优点,因此在工业生产中得到了广泛应用。 将BP神经网络和PID控制器相结合可以得到BP-PID控制器。BP神经网络可以用于模拟系统的动态特性,提高PID控制器的控制精度,避免PID控制器在控制过程中出现振荡或过度调节等问题。BP神经网络的输入层接收系统给定量和反馈量,隐含层进行计算,输出层的结果作为PID控制器的控制量进行控制。 BP-PID控制器可以通过模拟系统的动态特性,实现更加准确的控制。同时,在控制过程中,BP-PID控制器可以根据系统的实际变化动态调整,有效避免因系统参数变化而导致的控制失效。因此,BP-PID控制器在很多工业生产控制中都得到了广泛应用。 总之,BP神经网络和PID控制器通过相互结合,可以构建出更加准确、可靠的控制系统,对于提高工业生产效率和质量具有重要意义。 ### 回答3: BP神经网络PID控制是指利用BP神经网络来辅助实现PID控制。PID控制是传统的控制方法,是通过对系统的误差进行反馈调整,实现对系统稳定性、精度等性能指标的控制。而BP神经网络是一种基于反向传播算法的人工神经网络,可以学习和逼近非线性映射函数,用于解决非线性、时变等问题。 BP神经网络PID控制的过程是将系统误差信号经过BP神经网络的学习和逼近,得到一个控制规律,然后将其与传统PID控制相结合,实现对系统的控制。BP神经网络可以通过反向传播算法学习误差反馈调整指令与实际输出之间的非线性映射函数,从而更加精确地调整控制量,提高系统的性能。 BP神经网络PID控制具有以下优点:一是可以更好地适应非线性、时变等复杂系统的控制需求;二是可以通过神经网络的学习和逼近,提高系统控制的精度和稳定性,减少系统的振荡和误差;三是可以通过对神经网络的优化,实现在线学习和实时控制,适应实时控制的要求。 总之,BP神经网络PID控制是一种集传统PID控制和BP神经网络学习与逼近方法于一体的控制方法,可以弥补传统PID控制的不足,并提高系统的控制性能和稳定性。

基于bp神经网络pid控制

基于BP神经网络的PID控制是一种使用反向传播算法训练的神经网络来实现PID控制器的方法。PID控制器是一种常用的控制器类型,可以用于调节系统的输出以使其达到期望值。 在使用BP神经网络实现PID控制时,首先需要设计一个多层前馈神经网络,其中输入层接收系统的状态信息,输出层对应于控制器的输出。中间的隐藏层可以根据需要设置多个。 训练神经网络的过程包括以下几个步骤: 1. 收集训练数据:通过将系统输入和输出的组合作为训练样本,收集一系列系统的输入输出数据。 2. 数据预处理:对训练数据进行归一化或标准化处理,以便提高训练效果。 3. 网络初始化:初始化神经网络的权重和偏置。 4. 前向传播:将输入样本通过神经网络前向传播,得到网络的输出。 5. 计算误差:将网络的输出与期望输出进行比较,计算误差。 6. 反向传播:使用误差进行反向传播,更新网络的权重和偏置。 7. 重复以上步骤:重复进行训练过程,直到达到预定的训练停止条件。 训练完成后,可以使用BP神经网络作为PID控制器的一部分,根据系统的状态信息输入到网络中,通过网络的输出得到控制器的输出,从而实现对系统的控制。 需要注意的是,BP神经网络的训练过程可能需要大量的数据和计算资源,并且需要合适的网络结构和参数设置,以获得良好的控制效果。

相关推荐

BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,主要用于模式识别和函数逼近等任务。PID智能控制是一种经典的自适应控制算法,可以用于实现对系统的自动调节和控制。本文将介绍如何使用C语言实现BP神经网络和PID智能控制。 首先,我们来介绍BP神经网络的实现。BP神经网络由输入层、隐藏层和输出层组成,其中隐藏层可以有多个。在C语言中,我们可以使用多维数组来表示神经网络的权值和偏置,使用循环来进行神经网络的前向传播和反向传播的计算。具体步骤如下: 1. 初始化神经网络的权值和偏置; 2. 输入样本数据,通过前向传播计算网络的输出值; 3. 计算网络误差,并通过反向传播调整网络的权值和偏置; 4. 重复步骤2和3,直到网络达到收敛。 接下来,我们来介绍PID智能控制的实现。PID控制器由比例控制、积分控制和微分控制三个部分组成。在C语言中,我们可以使用变量和循环来实现PID控制。具体步骤如下: 1. 初始化PID控制器的参数; 2. 获取当前系统的反馈值(例如温度、速度等); 3. 根据比例控制、积分控制和微分控制计算出控制信号; 4. 通过控制信号对系统进行控制; 5. 重复步骤2到4,直到系统达到期望状态或者满足停止条件。 综上所述,使用C语言可以分别实现BP神经网络和PID智能控制。在实际工程中,我们可以将这两种方法结合起来,使用BP神经网络进行模型学习和参数自动调节,并将学习到的控制模型应用于PID控制中,以实现对复杂系统的智能控制。
### 回答1: BP神经网络PID控制器是一种利用人工神经网络的反向传播算法来实现自适应控制的方法。对于高阶系统的仿真,BP神经网络PID控制器可以提供更好的性能和适应性。 首先,BP神经网络PID控制器可以处理高阶系统的非线性关系。传统的PID控制器对于高阶系统的非线性关系很难建模和处理,而神经网络可以通过学习样本数据来学习系统的非线性特性,并根据实时反馈来调整控制策略,提供更准确的控制效果。 其次,BP神经网络PID控制器可以自适应地调整参数。传统的PID控制器需要手动调整参数,对于复杂的高阶系统往往需要耗费大量的时间和经验来找到合适的参数。而神经网络可以根据实际系统状态和控制误差不断优化参数值,并利用反向传播算法使得控制器的性能逐渐接近最优值。 此外,BP神经网络PID控制器还可以应对高阶系统的不确定性。高阶系统往往存在各种噪声和干扰,而神经网络具有较强的鲁棒性和抗干扰能力。通过学习样本数据和实时反馈,神经网络可以对系统的不确定性进行建模和补偿,提高控制器的稳定性和鲁棒性。 总结来说,BP神经网络PID控制器在高阶系统的仿真中具有较好的性能和适应性。它可以处理非线性关系、自适应调整参数,并且具有良好的鲁棒性,能够应对复杂的高阶系统,并提供准确的控制效果。 ### 回答2: BP神经网络PID控制器是一种使用神经网络来代替传统PID控制器的控制方法。高阶系统指的是具有较复杂动态特性和非线性特性的系统。 BP神经网络PID控制器通过神经网络的学习能力,能够对高阶系统进行仿真和控制。首先,我们需要将高阶系统的输入与输出数据作为BP神经网络的训练数据,通过训练来学习系统的动态特性。在训练过程中,BP神经网络通过调整其权值和偏置,来拟合系统的输入输出关系。这样,经过训练后的BP神经网络就能够模拟和预测高阶系统的响应。 接下来,我们可以将训练好的BP神经网络与PID控制器结合起来,形成BP神经网络PID控制器。该控制器可以使用BP神经网络来估计系统的状态和动态特性,根据估计的信息进行控制器的调节,生成控制信号,对系统进行控制。与传统PID控制器相比,BP神经网络PID控制器具有更好的适应性和鲁棒性,能够在复杂的高阶系统中实现更精确的控制。 总的来说,BP神经网络PID控制器对于高阶系统的仿真是通过利用神经网络的学习能力来模拟和预测系统的动态特性,然后结合PID控制器进行控制。这种控制器能够更好地适应高阶系统的非线性特性,实现精确的控制。 ### 回答3: BP神经网络是一种基于反向传播算法的人工神经网络方法,可以用于控制系统中的PID控制器。PID控制器是一种常见的控制策略,可以用于高阶系统的控制。 在高阶系统中,BP神经网络PID控制器的仿真可以通过以下步骤来实现: 1. 确定系统的数学模型:首先,需要确定高阶系统的数学模型。通过对系统的物理特性和动力学方程进行建模,可以得到系统的数学描述。 2. 设计BP神经网络:根据高阶系统的数学模型和控制要求,设计BP神经网络。BP神经网络的输入通常包括系统的状态变量和参考信号等,输出为控制器的输出。 3. 训练神经网络:使用已知的系统输入和输出数据对神经网络进行训练。训练的目标是使神经网络能够准确地预测系统的输出,并且使控制误差最小化。 4. 调整控制参数:通过调整PID控制器的参数,使系统的响应满足控制要求。根据神经网络的输出,可以自适应地调整PID控制器的参数,以提高控制性能。 5. 仿真验证:使用训练好的BP神经网络PID控制器对高阶系统进行仿真。将系统的输入作为神经网络的输入,得到控制器的输出作为系统的控制信号,然后观察系统的响应情况。 通过以上步骤,可以对高阶系统的控制进行仿真。BP神经网络PID控制器具有非线性映射能力和自适应性,可以在复杂的系统中提供良好的控制性能。同时,BP神经网络PID控制器可以通过训练和参数调整来适应不同的系统和控制要求,具有较强的鲁棒性和智能性。
下面是一个基于BP神经网络自适应控制PID控制器的控制代码示例: python import numpy as np # 定义BP神经网络 class BPNeuralNetwork: def __init__(self, input_nodes, hidden_nodes, output_nodes): self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # 初始化权重 self.weights_input_hidden = np.random.randn(input_nodes, hidden_nodes) self.weights_hidden_output = np.random.randn(hidden_nodes, output_nodes) # 定义前向传播函数 def forward(self, X): self.hidden_layer = np.dot(X, self.weights_input_hidden) self.hidden_layer_activation = self.sigmoid(self.hidden_layer) self.output_layer = np.dot(self.hidden_layer_activation, self.weights_hidden_output) return self.output_layer # 定义sigmoid激活函数 def sigmoid(self, x): return 1 / (1 + np.exp(-x)) # 定义sigmoid激活函数的导数 def sigmoid_derivative(self, x): return x * (1 - x) # 定义PID控制器类 class PIDController: def __init__(self, Kp, Ki, Kd): self.Kp = Kp self.Ki = Ki self.Kd = Kd # 初始化误差、误差积分、误差微分 self.error = 0 self.error_integral = 0 self.error_derivative = 0 # 初始化上一次误差 self.prev_error = 0 # 初始化控制器输出 self.output = 0 # 初始化BP神经网络 self.nn = BPNeuralNetwork(1, 4, 1) # 定义控制器的控制函数 def control(self, set_point, process_variable): # 计算误差 self.error = set_point - process_variable # 计算误差积分 self.error_integral += self.error # 计算误差微分 self.error_derivative = self.error - self.prev_error # 计算控制器输出 self.output = self.Kp * self.error + self.Ki * self.error_integral + self.Kd * self.error_derivative # 使用BP神经网络对控制器输出进行调整 nn_input = np.array([[self.output]]) nn_output = self.nn.forward(nn_input) self.output = nn_output[0][0] # 更新上一次误差 self.prev_error = self.error return self.output 以上代码中,BPNeuralNetwork类定义了一个简单的BP神经网络,其中包括前向传播函数、sigmoid激活函数和sigmoid激活函数的导数。PIDController类定义了一个基于BP神经网络自适应控制的PID控制器,其中包括控制函数、误差、误差积分、误差微分等参数的计算,以及BP神经网络的调用。
自带BP神经网络PID是指使用BP神经网络算法进行自整定的PID控制器。BP神经网络是一种常用的人工神经网络模型,其基本思想是通过误差逆传播学习算法来训练网络,使其能够逼近目标函数。\[2\]自带BP神经网络PID相比传统的PID控制器,需要额外设定一个学习因子,使得神经网络能够自动调整PID参数。然而,自带BP神经网络PID存在一些问题。首先,初值选择的不合理可能导致闭环系统不稳定。其次,相比传统PID算法,自带BP神经网络PID需要设定更多的参数,包括三个初值和一个学习因子。这增加了调参的复杂性。最后,目前缺乏完整的理论稳定性证明,限制了自带BP神经网络PID的推广。\[1\]因此,在实际应用中,需要仔细考虑这些问题,并根据具体情况选择合适的控制方法。 #### 引用[.reference_title] - *1* *2* [基于BP神经网络的PID控制,pid神经网络什么原理](https://blog.csdn.net/wenangou/article/details/126660024)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [BP神经网络整定PID](https://blog.csdn.net/m0_66341377/article/details/125554784)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
基于BP神经网络自整定PID控制是一种控制方法,其主要思想是通过BP神经网络对系统进行在线学习,调整PID控制器的参数,以达到更好的控制效果。下面是一个基于BP神经网络自整定PID控制的实验报告: 1. 实验目的 本实验旨在通过BP神经网络自整定PID控制方法,使得控制系统具有较好的控制性能,包括快速响应、较小超调量和较小的稳态误差。 2. 实验原理 BP神经网络是一种反向传播算法,它可以通过训练样本,自动调整神经网络的权值和阈值,从而实现对系统的表示和控制。在BP神经网络自整定PID控制方法中,通过将神经网络作为PID控制器的一部分,将系统的误差作为网络的输入,将控制信号作为网络的输出,通过调整网络的权值和阈值来调整PID控制器的参数。 3. 实验步骤 本实验采用MATLAB进行仿真,在MATLAB中实现基于BP神经网络自整定PID控制的模型,并进行仿真实验。 具体实验步骤如下: (1)建立控制系统模型,包括被控对象、PID控制器、BP神经网络等。 (2)根据实验要求,设置系统的输入信号和输出信号。 (3)进行仿真实验,记录系统的输出响应,并根据实验结果调整PID控制器的参数。 (4)在BP神经网络中添加新的样本,重新训练网络,调整网络的权值和阈值。 (5)重复以上步骤,直到系统达到预期的控制效果。 4. 实验结果与分析 通过本实验,我们成功地实现了基于BP神经网络自整定PID控制的控制系统,并且得到了较好的控制效果。实验结果显示,该控制方法具有快速响应、较小超调量和较小的稳态误差等优点,能够应用于各种不同的控制系统中。 5. 总结 本实验主要介绍了基于BP神经网络自整定PID控制方法,在MATLAB中进行了仿真实验,并取得了良好的控制效果。该方法具有一定的理论意义和实际应用价值,可以为工程控制领域的研究和应用提供一定的参考。
基于改进型bp神经网络的PID控制系统是一种新兴的控制方法。传统的PID控制器在实际应用中存在一些问题,例如参数调节困难、响应速度慢等。而基于改进型bp神经网络的PID控制系统能够克服这些问题。 首先,改进型bp神经网络具有自适应学习和自适应调整能力。在控制系统中,通过输入量和输出量之间的关系,神经网络可以自动学习到系统的动态行为。根据实时的误差信号进行错误反向传播,通过不断调整权值和阈值,使得网络的输出与期望输出之间的误差最小化。这样,无需人为调节PID参数,控制系统就能够实现自动调整,提高了系统的适应性和鲁棒性。 其次,改进型bp神经网络具有强大的非线性映射能力。与传统PID控制器相比,神经网络可以有效地处理非线性系统。通过在神经网络中引入合适的激活函数和隐含层,可以对非线性系统进行多项式拟合,提高PID控制系统的稳定性和精确性。 最后,基于改进型bp神经网络的PID控制系统具有较快的响应速度。由于神经网络能够实现快速反馈和自适应调整,控制系统可以更快地响应输入变化和外部干扰。这对于实时性要求较高的控制任务非常重要。 综上所述,基于改进型bp神经网络的PID控制系统具有自适应学习和调整能力、非线性映射能力以及较快的响应速度。这种控制方法在自动化控制领域有着广泛的应用前景,可以提高控制系统的性能和稳定性。
以下是一段使用BP神经网络实现PID控制的代码: python import numpy as np # 定义BP神经网络类 class BPNN: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.W1 = np.random.randn(input_size, hidden_size) self.b1 = np.zeros((1, hidden_size)) self.W2 = np.random.randn(hidden_size, output_size) self.b2 = np.zeros((1, output_size)) # 定义sigmoid激活函数 def sigmoid(self, x): return 1 / (1 + np.exp(-x)) # 定义前向传播函数 def forward(self, x): self.z1 = np.dot(x, self.W1) + self.b1 self.a1 = self.sigmoid(self.z1) self.z2 = np.dot(self.a1, self.W2) + self.b2 self.y = self.z2 # 定义反向传播函数 def backward(self, x, y_true): delta2 = self.y - y_true dW2 = np.dot(self.a1.T, delta2) db2 = np.sum(delta2, axis=0, keepdims=True) delta1 = np.dot(delta2, self.W2.T) * self.a1 * (1 - self.a1) dW1 = np.dot(x.T, delta1) db1 = np.sum(delta1, axis=0) self.W1 -= 0.1 * dW1 self.b1 -= 0.1 * db1 self.W2 -= 0.1 * dW2 self.b2 -= 0.1 * db2 # 定义PID控制器类 class PIDController: def __init__(self, Kp, Ki, Kd, setpoint): self.Kp = Kp self.Ki = Ki self.Kd = Kd self.setpoint = setpoint self.last_error = 0 self.integral = 0 # 定义控制函数 def control(self, process_variable): error = self.setpoint - process_variable self.integral += error derivative = error - self.last_error self.last_error = error output = self.Kp * error + self.Ki * self.integral + self.Kd * derivative return output # 定义主函数 def main(): # 初始化BP神经网络 nn = BPNN(1, 10, 1) # 初始化PID控制器 pid = PIDController(0.5, 0.1, 0.2, 10) # 训练BP神经网络 for i in range(1000): x = np.random.rand(1, 1) * 20 y_true = pid.control(x) nn.forward(x) nn.backward(x, y_true) # 测试BP神经网络 for i in range(10): x = np.random.rand(1, 1) * 20 y_pred = nn.forward(x) y_true = pid.control(x) print("Input:", x[0][0], "Output:", y_pred[0][0], "True:", y_true) if __name__ == "__main__": main() 这段代码实现了一个简单的PID控制器,其中使用了BP神经网络来训练控制器的参数。在训练过程中,控制器的输入为随机生成的过程变量,输出为PID控制器的输出;神经网络的输入为过程变量,输出为神经网络的预测值,通过反向传播算法更新神经网络的权重和偏置。在测试过程中,随机生成过程变量,分别使用PID控制器和神经网络来计算输出,并将结果打印出来。

最新推荐

BP神经网络原理及Python实现代码

主要为大家详细介绍了BP神经网络原理,以及Python实现BP神经网络,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

BP神经网络python简单实现

本文来自于CSDN,介绍了BP神经网络原理以及如何使用Python来实现BP神经网络等相关知识。人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善.联想大家熟悉的回归问题,神经网络模型实际...

BP神经网络优秀论文1.pdf

这是BP网络算法的一些论文,仅有一篇。这是自己打美赛时留下来的东西,大家可以参考它的模板和一些大标题的英文写法。这篇应该是O奖的。

基于BP神经网络的PID控制器在温控系统中的应用

基于BP神经网络的PID控制器具有逼近任意非线性函数的能力,能实现对PID控制器的参数 , , 的实时在线整定,使系统具有更好的鲁棒性和自适应性,其输出也可以通过在线调整达到预期的控制精度,适用于温控系统。...

MATLAB 人工智能实验设计 基于BP神经网络的鸢尾花分类器设计

了解分类问题的概念以及基于BP神经网络设计分类器的基本流程。 二、实验平台 MatLab/Simulink仿真平台。 三、实验内容和步骤 1. iris数据集简介 iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson's ...

基于at89c51单片机的-智能开关设计毕业论文设计.doc

基于at89c51单片机的-智能开关设计毕业论文设计.doc

"蒙彼利埃大学与CNRS联合开发细胞内穿透载体用于靶向catphepsin D抑制剂"

由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供于2016年5月26日在评审团面前进行了辩护让·吉隆波尔多大学ARNA实验室CNRS- INSERM教授报告员塞巴斯蒂安·帕波特教授,CNRS-普瓦捷大学普瓦捷介质和材料化学研究所报告员帕斯卡尔·拉斯特洛教授,CNRS-审查员让·马丁内斯蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授审查员文森特·利索夫斯基蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授论文主任让-弗朗索瓦·赫尔南德斯CNRS研究总监-蒙彼利埃大学Max Mousseron生物分子研究论文共同主任由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供�

设计一个程序有一个字符串包含n个字符 写一个函数 将此字符串中从第m个字符开始的全部字符复制成为另一个字符串 用指针c语言

以下是用指针实现将字符串中从第m个字符开始的全部字符复制成为另一个字符串的C语言程序: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> void copyString(char *a, char *b, int n, int m); int main() { int n, m; char *a, *b; printf("请输入字符串长度n:"); scanf("%d", &n); a = (char*)malloc(n * sizeof(char)); b =

基于C#多机联合绘图软件的实现-毕业设计论文.doc

基于C#多机联合绘图软件的实现-毕业设计论文.doc

4G车载网络中无线电资源的智能管理

4G车载网络中无线电资源的智能管理汽车网络从4G到5G的5G智能无线电资源管理巴黎萨克雷大学博士论文第580号博士学院博士专业:网络、信息与通信研究单位:巴黎萨克雷大学,UVSQ,LI PARAD,78180,法国伊夫林省圣昆廷参考:凡尔赛大学-伊夫林省圣昆廷论文于11月30日在巴黎萨克雷发表并答辩2021年,由玛丽亚姆·阿卢奇·马迪陪审团组成Pascal Lorenz总裁上阿尔萨斯大学大学教授Mohamed Yacine Ghamri-Doudane拉罗谢尔大学报告员和审查员教授Rami Langar报告员和审查员马恩河谷大学Oyunchimeg SHAGDARVEDECOM研发(HDR)团队负责人审查员论文方向Samir TOHME博士生导师巴黎萨克雷大学名誉教授UVSQ/LI- PARADKALLEL KHEMIRI共同监督巴黎萨克雷UVSQ/大卫Guy Pujolle受邀索邦大学Tara Yahiya邀请巴黎萨克雷大学/LISN高级讲师(HDR)博士论文NNT:2021UPASG061谢谢你首先,我要感谢我的论文导师M.萨米�