基于以上我的问题,# evaluate mae, y, yhat =walk_forward_validation(data, 12) print('MAE: %.3f' %mae)这个什么意思
时间: 2024-04-21 22:26:51 浏览: 114
这段代码的作用是对模型进行性能评估,其中 walk_forward_validation() 函数进行滚动预测并计算预测误差,返回三个值:error、test[:, 1] 和 predictions。其中 error 是平均绝对误差(MAE),test[:, 1] 是测试集的实际值,predictions 是模型预测的值。这三个值分别被赋值给了变量 mae、y 和 yhat。最后通过 print() 函数输出平均绝对误差的值。
相关问题
#5折交叉验证 k = 5 mun_validation_samples = len(x_Train_normaliza) // k #np.random.shuffle(x_Train_normaliza) # validation_score = [] sum=0 import random for fold in range(k): validation_data = x_Train_normaliza[mun_validation_samplesfold:mun_validation_samples(fold+1)] validation_data_label=y_Trainonehot[mun_validation_samplesfold:mun_validation_samples(fold+1)] a=x_Train_normaliza[:mun_validation_samples * fold] b=x_Train_normaliza[mun_validation_samples * (fold+1):] training_data=np.append(a,b,axis=0) c=y_Trainonehot[:mun_validation_samplesfold] d= y_Trainonehot[mun_validation_samples(fold+1):] training_label=np.append(c,d,axis=0) #training_label=y_Trainonehot[:mun_validation_samplesfold] + y_Trainonehot[mun_validation_samples(fold+1):] #打散数据 index = [i for i in range(len(training_data))] random.shuffle(index) data = training_data[index] label = training_label[index] #开始训练 train_history=model.fit(x=data, #使用model.fit进行训练,训练过程存储在train_history变量里 y=label, epochs=2, batch_size=200,#每次处理200张 verbose=2)#显示训练过程 #model.train(training_data) validation_score = model.evaluate(validation_data,validation_data_label) validation_score_accuracy=validation_score[1] sum=sum+validation_score_accuracy print('validation_score=',validation_score_accuracy) validation_score_average=sum/k print('validation_score_average',validation_score_average)为什么np和model会报错
根据你提供的代码,我无法确定具体哪些地方出现了错误。但是,可以根据代码中使用到的库来推测可能的问题。
1. `np` 报错:如果是 `numpy` 库报错,有可能是你没有正确导入 `numpy` 库或者没有将其缩写为 `np`。你可以在代码开头加上 `import numpy as np` 来解决这个问题。
2. `model` 报错:如果是模型 `model` 报错,有可能是你没有正确导入模型或者没有实例化模型。你需要先根据你的具体需求,选择合适的模型,并且需要通过代码实例化这个模型,例如:
```
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(32, input_dim=784, activation='relu'))
model.add(Dense(10, activation='softmax'))
```
这段代码实例化了一个简单的神经网络模型。如果你使用的是其他类型的模型或者其他框架,可以根据具体情况进行相应的修改。
另外,建议在出现错误时,报错信息能够提供更多的信息,例如错误类型、错误行数等等,这样更有助于解决问题。
import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train tf.compat.v1.reset_default_graph() EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: #定义输入与输出的格式 x = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} #直接调用封装好的函数来计算前向传播的结果 y = mnist_inference.inference(x, None) #计算正确率 correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32)) #通过变量重命名的方式加载模型 variable_averages = tf.train.ExponentialMovingAverage(0.99) variable_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variable_to_restore) #每隔10秒调用一次计算正确率的过程以检测训练过程中正确率的变化 while True: with tf.compat.v1.Session() as sess: ckpt = tf.train.get_checkpoint_state(minist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: #load the model saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets(r"D:\Anaconda123\Lib\site-packages\tensorboard\mnist", one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.compat.v1.app.run()对代码进行改进
以下是对代码的改进建议:
1. 在代码开头添加注释,简要说明代码功能和使用方法。
2. 将导入模块的语句放在代码开头。
3. 将模型保存路径和评估时间间隔定义为常量,并使用有意义的变量名。
4. 将计算正确率和加载模型的过程封装为函数。
5. 在主函数中调用评估函数。
改进后的代码如下:
```
# 该代码实现了使用已训练好的模型对 MNIST 数据集进行评估
import time
import tensorflow.compat.v1 as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import mnist_train
# 定义常量
MODEL_SAVE_PATH = 'model/'
EVAL_INTERVAL_SECS = 10
def evaluate(mnist):
"""
计算模型在验证集上的正确率
"""
with tf.Graph().as_default() as g:
# 定义输入和输出格式
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
# 直接调用封装好的函数计算前向传播结果
y = mnist_inference.inference(x, None)
# 计算正确率
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 加载模型
variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# 在验证集上计算正确率
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict={x: mnist.validation.images, y_: mnist.validation.labels})
print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
def main(argv=None):
# 读取数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 每隔一定时间评估模型在验证集上的正确率
while True:
evaluate(mnist)
time.sleep(EVAL_INTERVAL_SECS)
if __name__ == '__main__':
tf.app.run()
```
阅读全文
相关推荐















