tf.nn.max_pool([-1, 28, 28, 32], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME'),里面的strides=[1, 2, 2, 1]四个参数分别代表什么含义?
时间: 2023-10-03 21:09:46 浏览: 82
strides=[1, 2, 2, 1]中的四个参数分别代表批次大小、水平移动步长、垂直移动步长和通道数,即在图像的四个维度上设置的步长大小。在这个例子中,批次大小设为-1代表保留原有的批次大小不变,水平和垂直移动步长均为2表示每次在水平和垂直方向上跳过2个元素,通道数为1,即对32通道中的每个通道进行池化操作。
相关问题
w1=tf.Variable(tf.random_normal([3,3,3,16])) l1=tf.nn.conv2d(input=x_place_reshape,filters=w1,strides=(1,1),padding='SAME') l1=tf.nn.relu(l1) l1=tf.nn.max_pool2d(input=l1,ksize=(2,2),strides=(2,2),padding='SAME')
这段代码是用 TensorFlow 实现了一个卷积神经网络的前向传播过程,其中包括一个卷积层和一个池化层。具体来说,w1 是一个形状为 [3,3,3,16] 的卷积核,x_place_reshape 是输入数据,经过 reshape 后的形状为 [batch_size, height, width, channels]。在卷积层中,使用了 tf.nn.conv2d 函数对输入数据进行卷积操作,并使用 ReLU 函数作为激活函数;在池化层中,使用了 tf.nn.max_pool2d 函数对卷积结果进行池化操作。其中,ksize 和 strides 参数分别表示池化窗口的大小和步长,padding 参数表示是否使用填充操作。
def avg_pool(self, bottom, name): return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name) def max_pool(self, bottom, name): return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name) def conv_layer(self, bottom, name): with tf.variable_scope(name): filt = self.get_conv_filter(name) conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME') conv_biases = self.get_bias(name) bias = tf.nn.bias_add(conv, conv_biases) relu = tf.nn.relu(bias) return relu
这段代码定义了三个函数,用于构建VGG19模型中的卷积层和池化层。
avg_pool()函数用于定义平均池化层,其中bottom表示输入tensor,ksize表示池化窗口大小为[1, 2, 2, 1],strides表示步长为[1, 2, 2, 1],padding表示填充方式为'SAME'。
max_pool()函数用于定义最大池化层,其输入参数和参数设置与avg_pool()函数类似,只不过池化的方式不同。
conv_layer()函数用于定义卷积层,其中bottom表示输入tensor,name表示该卷积层的名称。在函数内部,首先调用了get_conv_filter()函数获取该卷积层的卷积核,然后使用tf.nn.conv2d()函数进行卷积操作,再调用get_bias()函数获取该卷积层的偏置,使用tf.nn.bias_add()函数加上偏置,最后使用ReLU激活函数激活输出结果,并将其返回。
阅读全文