STM32F4 HAL库 SPI

时间: 2023-10-28 13:40:36 浏览: 23
STM32F4 HAL库 SPI是一种基于HAL库的串行外设接口(SPI)驱动程序,用于STM32F4系列微控制器。它提供了一组API,可用于配置和控制SPI总线,从而实现与其他设备的通信。它支持主从模式和多种配置选项,例如数据位数、极性、相位和时钟频率等。由于它是基于HAL库的,因此它易于使用,并且可以在不同的STM32F4微控制器上进行移植。
相关问题

stm32f4 hal库spilcd驱动

STMicroelectronics的STM32F4系列微控制器是一款高性能、低功耗的MCU芯片。HAL(Hardware Abstraction Layer)库是STMicroelectronics提供的一种软件库,用于简化STM32系列微控制器的开发流程。 SPI(Serial Peripheral Interface)是一种通信协议,可以用于在微控制器和外设之间进行串行数据传输。LCD(Liquid Crystal Display)是一种常见的显示器件,用于显示图像和文本。使用STM32F4 HAL库驱动SPI LCD可以实现在STM32F4微控制器上控制LCD屏幕的功能。 首先,我们需要在STM32F4的硬件上连接SPI总线和LCD屏幕。通过阅读相关的硬件文档,我们可以了解到哪些引脚是SPI总线的主线和从线,以及如何正确连接LCD屏幕。 接下来,我们需要编写代码来初始化SPI总线和LCD屏幕。使用HAL库的相关函数,我们可以在代码中初始化SPI总线和配置相关的参数,如数据传输速率、时钟相位、数据位宽等。 在SPI总线初始化完成后,我们可以使用HAL库的函数来发送和接收数据。通过编写相应的代码,我们可以将需要显示的图像数据或文本发送到LCD屏幕上。 最后,我们需要编写代码来进行LCD屏幕的控制。这包括设置显示模式(如亮度、对比度等)、光标位置和显示字符等。HAL库提供了一系列函数,可以简化这些操作的实现。 总之,使用STM32F4 HAL库驱动SPI LCD可以方便地在STM32F4微控制器上控制LCD屏幕显示。我们只需要正确连接硬件,并编写相应的代码来初始化SPI总线和LCD屏幕,然后使用HAL库的函数进行数据传输和屏幕控制即可。这样可以大大简化LCD驱动的开发流程,节省开发时间和提高开发效率。

stm32F4HAL库spi读写w25q32

下面是使用STM32F4 HAL库进行SPI读写W25Q32的示例代码: ```c #include "stm32f4xx_hal.h" #include <string.h> /* 定义SPI接口 */ SPI_HandleTypeDef hspi1; /* 定义W25Q32的命令码 */ #define W25Q32_CMD_WRITE_ENABLE 0x06 #define W25Q32_CMD_WRITE_DISABLE 0x04 #define W25Q32_CMD_READ_STATUS_REG1 0x05 #define W25Q32_CMD_READ_STATUS_REG2 0x35 #define W25Q32_CMD_READ_DATA 0x03 #define W25Q32_CMD_PAGE_PROGRAM 0x02 #define W25Q32_CMD_ERASE_SECTOR 0x20 #define W25Q32_CMD_ERASE_CHIP 0xC7 /* 定义W25Q32的状态寄存器 */ typedef struct { uint8_t busy:1; uint8_t write_enable_latch:1; uint8_t block_protection:3; uint8_t reserved:1; uint8_t page_size:2; } w25q32_status_reg1_t; /* 初始化SPI接口 */ void MX_SPI1_Init(void) { /* SPI1 parameter configuration */ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } } /* 读取W25Q32的状态寄存器1 */ void w25q32_read_status_reg1(w25q32_status_reg1_t *status_reg) { uint8_t cmd = W25Q32_CMD_READ_STATUS_REG1; uint8_t data[2]; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_SPI_Receive(&hspi1, data, sizeof(data), HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); status_reg->busy = (data[0] & 0x01); status_reg->write_enable_latch = ((data[0] >> 1) & 0x01); status_reg->block_protection = ((data[0] >> 2) & 0x07); status_reg->reserved = ((data[0] >> 5) & 0x01); status_reg->page_size = ((data[1] >> 6) & 0x03); } /* 写入W25Q32的状态寄存器1 */ void w25q32_write_status_reg1(w25q32_status_reg1_t *status_reg) { uint8_t cmd = W25Q32_CMD_WRITE_ENABLE; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); cmd = W25Q32_CMD_PAGE_PROGRAM; uint8_t data[2] = {0}; data[0] |= (status_reg->busy & 0x01); data[0] |= (status_reg->write_enable_latch & 0x01) << 1; data[0] |= (status_reg->block_protection & 0x07) << 2; data[0] |= (status_reg->reserved & 0x01) << 5; data[1] |= (status_reg->page_size & 0x03) << 6; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_SPI_Transmit(&hspi1, data, sizeof(data), HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); } /* 写入W25Q32的一页数据 */ void w25q32_write_page(uint32_t addr, uint8_t *data, uint32_t len) { uint8_t cmd = W25Q32_CMD_WRITE_ENABLE; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); cmd = W25Q32_CMD_PAGE_PROGRAM; uint8_t addr_buf[3]; addr_buf[0] = (addr >> 16) & 0xFF; addr_buf[1] = (addr >> 8) & 0xFF; addr_buf[2] = addr & 0xFF; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_SPI_Transmit(&hspi1, addr_buf, sizeof(addr_buf), HAL_MAX_DELAY); HAL_SPI_Transmit(&hspi1, data, len, HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); } /* 读取W25Q32的一页数据 */ void w25q32_read_page(uint32_t addr, uint8_t *data, uint32_t len) { uint8_t cmd = W25Q32_CMD_READ_DATA; uint8_t addr_buf[3]; addr_buf[0] = (addr >> 16) & 0xFF; addr_buf[1] = (addr >> 8) & 0xFF; addr_buf[2] = addr & 0xFF; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_SPI_Transmit(&hspi1, addr_buf, sizeof(addr_buf), HAL_MAX_DELAY); HAL_SPI_Receive(&hspi1, data, len, HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); } /* 擦除W25Q32的一个扇区 */ void w25q32_erase_sector(uint32_t addr) { uint8_t cmd = W25Q32_CMD_WRITE_ENABLE; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); cmd = W25Q32_CMD_ERASE_SECTOR; uint8_t addr_buf[3]; addr_buf[0] = (addr >> 16) & 0xFF; addr_buf[1] = (addr >> 8) & 0xFF; addr_buf[2] = addr & 0xFF; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_SPI_Transmit(&hspi1, addr_buf, sizeof(addr_buf), HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); } /* 擦除W25Q32的整个芯片 */ void w25q32_erase_chip(void) { uint8_t cmd = W25Q32_CMD_WRITE_ENABLE; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); cmd = W25Q32_CMD_ERASE_CHIP; HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Transmit(&hspi1, &cmd, 1, HAL_MAX_DELAY); HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET); } int main(void) { /* 初始化HAL库 */ HAL_Init(); /* 初始化SPI接口 */ MX_SPI1_Init(); /* 定义状态寄存器并读取 */ w25q32_status_reg1_t status_reg; w25q32_read_status_reg1(&status_reg); /* 写入一页数据 */ uint8_t data[256]; memset(data, 0xFF, sizeof(data)); w25q32_write_page(0x000000, data, sizeof(data)); /* 读取一页数据 */ uint8_t read_data[256]; w25q32_read_page(0x000000, read_data, sizeof(read_data)); /* 擦除一个扇区 */ w25q32_erase_sector(0x000000); /* 擦除整个芯片 */ w25q32_erase_chip(); while (1) { } } ``` 需要注意的是,上述代码中的W25Q32的命令码和状态寄存器的定义仅适用于W25Q32型号的Flash芯片,如果需要使用其他型号的Flash芯片,需要根据数据手册自行修改。同时,还需要根据实际硬件连接情况修改SPI接口的初始化代码。

相关推荐

最新推荐

recommend-type

STM32的使用之SPI通信DMA模式

MCU:STM32F303VC,在SPI通信中,可以同时开启发送和接收DMA请求,自动数据的发送和接收,完成数据的交换。
recommend-type

STM32 SPI DMA 的使用

一是想总结一下SPI总线的特点与注意点,二是总结一下SPI DMA的使用。
recommend-type

高校学生选课系统项目源码资源

项目名称: 高校学生选课系统 内容概要: 高校学生选课系统是为了方便高校学生进行选课管理而设计的系统。该系统提供了学生选课、查看课程信息、管理个人课程表等功能,同时也为教师提供了课程发布和管理功能,以及管理员对整个选课系统的管理功能。 适用人群: 学生: 高校本科生和研究生,用于选课、查看课程信息、管理个人课程表等。 教师: 高校教师,用于发布课程、管理课程信息和学生选课情况等。 管理员: 系统管理员,用于管理整个选课系统,包括用户管理、课程管理、权限管理等。 使用场景及目标: 学生选课场景: 学生登录系统后可以浏览课程列表,根据自己的专业和兴趣选择适合自己的课程,并进行选课操作。系统会实时更新学生的选课信息,并生成个人课程表。 教师发布课程场景: 教师登录系统后可以发布新的课程信息,包括课程名称、课程描述、上课时间、上课地点等。发布后的课程将出现在课程列表中供学生选择。 管理员管理场景: 管理员可以管理系统的用户信息,包括学生、教师和管理员账号的添加、删除和修改;管理课程信息,包括课程的添加、删除和修改;管理系统的权限控制,包括用户权限的分配和管理。 目标: 为高校学生提
recommend-type

TC-125 230V 50HZ 圆锯

TC-125 230V 50HZ 圆锯
recommend-type

影音娱乐北雨影音系统 v1.0.1-bymov101.rar

北雨影音系统 v1.0.1_bymov101.rar 是一个计算机专业的 JSP 源码资料包,它为用户提供了一个强大而灵活的在线影音娱乐平台。该系统集成了多种功能,包括视频上传、播放、分享和评论等,旨在为用户提供一个全面而便捷的在线视频观看体验。首先,北雨影音系统具有强大的视频上传功能。用户可以轻松地将本地的视频文件上传到系统中,并与其他人分享。系统支持多种视频格式,包括常见的 MP4、AVI、FLV 等,确保用户能够方便地上传和观看各种类型的视频。其次,该系统提供了丰富的视频播放功能。用户可以选择不同的视频进行观看,并且可以调整视频的清晰度、音量等参数,以适应不同的观看需求。系统还支持自动播放下一个视频的功能,让用户可以连续观看多个视频,无需手动切换。此外,北雨影音系统还提供了一个社交互动的平台。用户可以在视频下方发表评论,与其他观众进行交流和讨论。这为用户之间的互动提供了便利,增加了观看视频的乐趣和参与感。最后,该系统还具备良好的用户体验和界面设计。界面简洁明了,操作直观易用,让用户可以快速上手并使用各项功能。同时,系统还提供了个性化的推荐功能,根据用户的观看历史和兴趣,为用户推荐
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

设计算法实现将单链表中数据逆置后输出。用C语言代码

如下所示: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 struct node { int data; struct node *next; }; // 定义单链表逆置函数 struct node* reverse(struct node *head) { struct node *prev = NULL; struct node *curr = head; struct node *next; while (curr != NULL) { next
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。