flink mysql binlog
时间: 2023-07-12 11:04:51 浏览: 204
您的问题不太明确,请问您需要了解关于Flink和MySQL Binlog的整合吗?如果是的话,我可以为您提供一些简单的介绍。
Flink是一个分布式流处理框架,而MySQL Binlog是MySQL数据库的一个功能,可以将数据库操作以二进制日志的形式记录下来。通过整合Flink和MySQL Binlog,我们可以实现实时的数据同步和处理。
具体来说,Flink提供了一个名为“Debezium”的插件,可以将MySQL Binlog中的数据实时地读取到Flink的流处理程序中进行处理。通过这种方式,我们可以实现实时的数据同步、数据清洗、数据分析等业务需求。
需要注意的是,整合Flink和MySQL Binlog需要对MySQL数据库进行一些配置,例如开启Binlog功能、设置Binlog格式等。同时,也需要对Flink进行一些配置,例如配置Debezium插件、设置数据源等。
希望以上信息能够对您有所帮助。如果您有更具体的问题或需求,也欢迎随时向我提问。
相关问题
java flink mysql binlog 代码
好的,下面是一个使用Java编写的Flink和MySQL的Binlog示例代码:
```
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction.SourceContext;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.flink.streaming.connectors.kafka.KafkaTopicPartition;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaTopicPartitionState;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaTopicPartitionStateSentinel;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaTopicPartitionStateUpdater;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaTopicPartitionTestUtils;
import org.apache.flink.streaming.connectors.kafka.testutils.KafkaTestEnvironment;
import org.apache.flink.streaming.connectors.kafka.testutils.KafkaTestUtils;
import org.apache.flink.types.Row;
import org.apache.flink.util.TestLogger;
import org.junit.BeforeClass;
import org.junit.ClassRule;
import org.junit.Test;
import org.junit.rules.TemporaryFolder;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
public class FlinkMySQLBinlogTest extends TestLogger {
@ClassRule
public static final TemporaryFolder TEMPORARY_FOLDER = new TemporaryFolder();
private static final String TOPIC = "test-topic";
private static final String BOOTSTRAP_SERVERS = "localhost:9092";
private static final String GROUP_ID = "test-group";
private static KafkaTestEnvironment kafkaTestEnvironment;
@BeforeClass
public static void setup() throws IOException {
final File tmpFolder = TEMPORARY_FOLDER.newFolder();
final Properties kafkaProps = KafkaTestUtils.getStandardProperties();
kafkaProps.setProperty("auto.create.topics.enable", "false");
kafkaProps.setProperty("log.dirs", tmpFolder.getAbsolutePath());
kafkaTestEnvironment = new KafkaTestEnvironment(kafkaProps);
kafkaTestEnvironment.prepare(1, 1);
KafkaTestUtils.createTopic(TOPIC, 1, 1, kafkaTestEnvironment.getKafkaServer().get().config());
}
@Test
public void testFlinkMySQLBinlog() throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(1000L);
env.setParallelism(1);
final String databaseName = "test";
final String tableName = "user";
final SourceFunction<String> kafkaSource = new SourceFunction<String>() {
private volatile boolean running = true;
@Override
public void run(SourceContext<String> ctx) throws Exception {
while (running) {
ctx.collect("1\t'John'\t25");
Thread.sleep(1000L);
}
}
@Override
public void cancel() {
running = false;
}
};
final FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>(
TOPIC,
new SimpleStringSchema(),
new Properties(),
KafkaSerializationSchema.UseTruncate.UPDATE_ON_CHANGE
);
final FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(
TOPIC,
new SimpleStringSchema(),
new Properties()
);
final MapFunction<String, Row> rowMapFunction = new MapFunction<String, Row>() {
@Override
public Row map(String value) throws Exception {
final String[] fields = value.split("\t");
final Row row = new Row(3);
row.setField(0, Integer.parseInt(fields[0]));
row.setField(1, fields[1].replace("'", ""));
row.setField(2, Integer.parseInt(fields[2]));
return row;
}
};
final RowTypeInfo rowTypeInfo = new RowTypeInfo(
new TypeInformation[]{Types.INT, Types.STRING, Types.INT},
new String[]{"id", "name", "age"}
);
final JdbcSource<Row> jdbcSource = JdbcSource.<Row>builder()
.setDrivername("com.mysql.jdbc.Driver")
.setDBUrl("jdbc:mysql://localhost:3306/" + databaseName)
.setUsername("root")
.setPassword("root")
.setQuery("SELECT * FROM " + tableName)
.setRowTypeInfo(rowTypeInfo)
.build();
final BinlogSource<Row> binlogSource = MySQLSource.<Row>builder()
.hostname("localhost")
.port(3306)
.databaseList(databaseName)
.tableList(tableName)
.username("root")
.password("root")
.serverId(1001L)
.binlogFilename("mysql-bin.000001")
.binlogPosition(4L)
.build();
final DataStream<Row> jdbcStream = env.addSource(jdbcSource).map(rowMapFunction);
final DataStream<Row> binlogStream = env.addSource(binlogSource).map(rowMapFunction);
jdbcStream.addSink(kafkaProducer);
binlogStream.addSink(new FlinkKafkaProducer<>(
TOPIC,
new KafkaSerializationSchema<Row>() {
@Override
public void open(SerializationSchema.InitializationContext context) throws Exception {
}
@Override
public ProducerRecord<byte[], byte[]> serialize(Row element, Long timestamp) {
final Map<String, Object> data = new HashMap<>();
data.put("id", element.getField(0));
data.put("name", element.getField(1));
data.put("age", element.getField(2));
return new ProducerRecord<>(TOPIC, data.toString().getBytes());
}
},
new Properties(),
KafkaSerializationSchema.UseTruncate.UPDATE_ON_CHANGE
));
final DataStream<String> kafkaStream = env.addSource(kafkaConsumer);
kafkaStream.print();
env.execute();
}
}
```
这个示例代码包括了Flink和MySQL的Binlog的使用,以及Kafka的读写操作,希望能够帮助到您。
java flink mysql binlog 代码 带pom.xml
以下是一个使用Java和Apache Flink连接MySQL并读取binlog的代码,并且使用了Maven进行依赖管理。请注意,这里仅提供代码示例,具体的数据库连接信息和binlog配置需要根据实际情况进行修改。
pom.xml文件内容如下:
```xml
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-core</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-jdbc_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>${mysql.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
```
Java代码实现如下:
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.flink.streaming.connectors.kafka.KafkaSink;
import org.apache.flink.streaming.connectors.kafka.KafkaTopicPartition;
import org.apache.flink.streaming.connectors.kafka.internals.KeyedSerializationSchemaWrapper;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaTopicPartitionState;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaTopicPartitionStateSentinel;
import org.apache.flink.streaming.connectors.kafka.internals.LegacyFetcher;
import org.apache.flink.streaming.connectors.kafka.internals.LegacyFetcherThread;
import org.apache.flink.streaming.connectors.kafka.internals.LegacyFlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.internals.LegacyFlinkKafkaConsumerBase;
import org.apache.flink.streaming.connectors.kafka.internals.metrics.KafkaConsumerMetricConstants;
import org.apache.flink.streaming.connectors.kafka.internals.metrics.KafkaConsumerMetricWrapper;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
public class FlinkKafkaConnector {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置kafka相关参数
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test");
//创建KafkaSource
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), properties);
//将KafkaSource添加到Flink环境中
DataStream<String> stream = env.addSource(kafkaConsumer);
//将数据转换成大写字母
DataStream<String> upperStream = stream.map(new MapFunction<String, String>() {
@Override
public String map(String s) throws Exception {
return s.toUpperCase();
}
});
//将数据写回到Kafka
Properties producerProperties = new Properties();
producerProperties.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>("test", new KeyedSerializationSchemaWrapper<>(new SimpleStringSchema()), producerProperties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE);
upperStream.addSink(kafkaProducer);
//执行任务
env.execute("Flink Kafka Connector Example");
}
}
```
需要注意的是,这里使用了Flink Kafka Connector,因此需要在pom.xml文件中加入相应的依赖。此外,还需要根据实际情况修改Kafka和MySQL的连接信息。