解释一下代码:self.heads = set([triple[0] for triple in self.triple_list])
时间: 2023-05-15 22:05:38 浏览: 88
这段代码的作用是创建一个集合(set),其中包含了self.triple_list中所有三元组(triple)的第一个元素(triple[0])。换句话说,这个集合包含了所有三元组的头部(heads)。
相关问题
举例调用下面的方法 : class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.query_dense = tf.keras.layers.Dense(units=d_model) self.key_dense = tf.keras.layers.Dense(units=d_model) self.value_dense = tf.keras.layers.Dense(units=d_model) self.dense = tf.keras.layers.Dense(units=d_model)
假设你已经定义了一个名为 `model` 的神经网络模型,其中包含了 `MultiHeadAttention` 层,你可以使用下面的方法来调用这个层:
```
import tensorflow as tf
# 定义模型
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.multi_head_attention = MultiHeadAttention(d_model=64, num_heads=8)
def call(self, inputs):
# 调用 MultiHeadAttention 层
x = self.multi_head_attention(inputs)
return x
# 初始化模型
model = MyModel()
# 输入数据
inputs = tf.random.normal(shape=(32, 10, 64))
# 调用模型
outputs = model(inputs)
# 输出结果
print(outputs.shape)
```
在上面的代码中,我们首先定义了一个名为 `MyModel` 的神经网络模型,并在其中实例化了一个 `MultiHeadAttention` 层。然后,我们创建了一个 `model` 对象,该对象是 `MyModel` 的实例。接着,我们使用 `tf.random.normal()` 方法生成了一个形状为 `(32, 10, 64)` 的张量作为输入数据,然后将其传递给模型的 `call()` 方法,得到了模型的输出结果。最后,我们打印出了输出结果的形状。
把这段代码里的location_embedding_dim去掉class my_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, location_embedding_dim, filters_1, filters_2, dropout): super(my_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads location_embedding_dim = 0 self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = location_embedding_dim self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads + self.location_embedding_dim, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features
这段代码里的location_embedding_dim是一个参数,它表示位置嵌入的维度。如果你想去掉它,可以把它的值设为0,然后在构造函数中把self.location_embedding_dim也设为0即可。具体来说,修改后的代码如下:
```
class my_GAT(torch.nn.Module):
def __init__(self, in_channels, out_channels, n_heads, filters_1, filters_2, dropout):
super(my_GAT, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.n_heads = n_heads
self.filters_1 = filters_1
self.filters_2 = filters_2
self.dropout = dropout
self.location_embedding_dim = 0
self.setup_layers()
def setup_layers(self):
self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1)
self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False)
def forward(self, edge_indices, features, location_embedding):
features = self.GAT_1(features, edge_indices)
features = torch.nn.functional.relu(features)
features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training)
features = self.GAT_2(features, edge_indices)
return features
```
阅读全文