cv2.VideoCapture("test.mp4").read None
时间: 2024-05-29 19:14:36 浏览: 59
`cv2.VideoCapture("test.mp4").read()` 返回一个元组 `(ret, frame)`,其中 `ret` 表示是否成功读取到帧,而 `frame` 则是当前帧的数据。如果 `cv2.VideoCapture("test.mp4").read()` 返回 `None`,则说明返回的元组为 `None`,也就是读取失败了。可能的原因包括文件路径错误、文件格式不支持、文件已损坏等等。你可以先检查一下路径和文件是否存在,或者尝试使用其他视频文件进行测试。
相关问题
import cv2import numpy as np# 读取视频帧cap = cv2.VideoCapture('test.mp4')ret, frame1 = cap.read()# 定义特征点的位置feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)prev_pts = cv2.goodFeaturesToTrack(cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY), mask=None, **feature_params)# 定义光流追踪参数lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))while True: ret, frame2 = cap.read() if not ret: break # 将前一帧的特征点作为输入 next_pts, status, error = cv2.calcOpticalFlowPyrLK(cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY), cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY), prev_pts, None, **lk_params) # 选取跟踪成功的特征点 good_new = next_pts[status == 1] good_old = prev_pts[status == 1] # 绘制光流轨迹 for i, (new, old) in enumerate(zip(good_new, good_old)): a, b = new.ravel() c, d = old.ravel() mask = cv2.line(mask, (a, b), (c, d), (0, 255, 0), 2) frame2 = cv2.circle(frame2, (a, b), 5, (0, 0, 255), -1) img = cv2.add(frame2, mask) cv2.imshow('frame', img) # 更新前一帧特征点 prev_pts = good_new.reshape(-1, 1, 2) k = cv2.waitKey(30) if k == 27: breakcv2.destroyAllWindows()cap.release()
这段代码是用 Python 和 OpenCV 库实现的光流追踪的功能,它可以读取视频帧并对相邻帧之间的运动进行分析。具体来说,它使用了 Lucas-Kanade 光流算法来跟踪前一帧中的特征点在当前帧中的位置,并将它们的轨迹可视化。代码中的参数包括特征点的最大数量、质量阈值、最小距离等,以及光流追踪的窗口大小、最大金字塔层数等。最后,代码实现了通过按下 ESC 键退出程序的功能。
import qrcode import cv2 import numpy as np from PIL import Image # 要生成二维码的字符串 data = "你好,世界!" # 生成二维码 qr = qrcode.QRCode( version=None, error_correction=qrcode.constants.ERROR_CORRECT_L, box_size=10, border=4, ) qr.add_data(data) qr.make(fit=True) qr_img = qr.make_image(fill_color="black", back_color="white") # 将二维码转化为OpenCV格式 qr_img_cv = cv2.cvtColor(np.asarray(qr_img), cv2.COLOR_RGB2BGR) # 打开动态背景图片 cap = cv2.VideoCapture("bg.mp4") # 循环读取视频帧并加入二维码 while True: ret, frame = cap.read() if not ret: break # 将带有二维码的图片缩小并粘贴到视频帧上 qr_img_cv_resized = cv2.resize(qr_img_cv, (200, 200)) frame[100:300, 100:300] = qr_img_cv_resized # 显示视频帧 cv2.imshow("frame", frame) if cv2.waitKey(1) == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows()这段代码中报错Traceback (most recent call last): File "D:/Phoenix Robot/python/代码/test1.py", line 21, in <module> qr_img_cv = cv2.cvtColor(np.asarray(qr_img), cv2.COLOR_RGB2BGR) TypeError: Expected Ptr<cv::UMat> for argument '%s'怎么解决
这个错误是因为 `cv2.cvtColor()` 函数的第一个参数需要是一个指向 `cv::UMat` 的指针,但是你传递的是一个 `numpy` 数组。你可以尝试将 `qr_img` 转换为 `cv::UMat` 类型,例如:
```python
qr_img_cv = cv2.cvtColor(cv2.UMat(np.asarray(qr_img)), cv2.COLOR_RGB2BGR)
```
或者直接将 `qr_img` 转换为 `cv::Mat` 类型:
```python
qr_img_cv = cv2.cvtColor(cv2.Mat(np.asarray(qr_img)), cv2.COLOR_RGB2BGR)
```
这样就可以解决这个错误了。
阅读全文