for true_mask, pred in zip(true_masks, masks_pred):
时间: 2024-04-26 11:24:57 浏览: 167
这是一段 Python 代码,使用了 zip 函数来同时迭代 true_masks 和 masks_pred 两个列表,并将它们的元素一一对应起来进行操作。具体来说,循环中的每次迭代会将 true_masks 和 masks_pred 中相同位置的元素作为 true_mask 和 pred 两个变量的值,然后执行相应的操作。在这里,true_mask 可能是一个布尔值,而 pred 则是一个预测出来的掩码值。
相关问题
if cfg.deepsupervision: masks_preds = net(imgs) loss = 0 for masks_pred in masks_preds: tot_cross_entropy = 0 for true_mask, pred in zip(true_masks, masks_pred): pred = (pred > cfg.out_threshold).float() #二值化处理 if cfg.n_classes > 1: sub_cross_entropy = F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0).squeeze(1)).item()#计算损失 else: sub_cross_entropy = dice_coeff(pred, true_mask.squeeze(dim=1)).item()#预测分割掩码和真实标签相似度,将两个结果转化为二值化的掩码,然后计算交集并集 tot_cross_entropy += sub_cross_entropy #计算总损失 tot_cross_entropy = tot_cross_entropy / len(masks_preds) #计算平均损失 tot += tot_cross_entropy #计算总平均损失 else: masks_pred = net(imgs) for true_mask, pred in zip(true_masks, masks_pred): pred = (pred > cfg.out_threshold).float() if cfg.n_classes > 1: tot += F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0).squeeze(1)).item() else: tot += dice_coeff(pred, true_mask.squeeze(dim=1)).item() pbar.update(imgs.shape[0])
这段代码是语义分割任务中的损失计算部分,其中使用了深监督(Deep Supervision)的方法。在深监督中,一个模型通常会产生多个输出,每个输出都对应着不同的层或分支,在训练过程中,每个输出都会计算一次损失,并反向传播更新梯度。这个方法可以有效地加快模型的收敛速度,并提高模型的鲁棒性。
如果cfg.deepsupervision为True,表示使用深监督方法。代码首先使用网络net对输入图像imgs进行预测,得到多个预测掩码masks_pred。接下来,对于每一个预测掩码masks_pred,计算它与真实掩码true_masks之间的交叉熵损失或Dice系数损失,并将它们累加得到总的损失tot_cross_entropy。最后,将总的损失除以预测掩码的数量,得到平均损失tot_cross_entropy,并将它加到总平均损失tot中。
如果cfg.deepsupervision为False,表示不使用深监督方法。代码中仍然使用网络net对输入图像imgs进行预测,得到一个预测掩码masks_pred。接下来,计算它与真实掩码true_masks之间的交叉熵损失或Dice系数损失,并将它们累加得到总的损失tot。
最后,代码使用进度条pbar来显示训练的进度。其中pbar.update(imgs.shape[0])表示当前已经处理了多少张图片。
解释这段代码for i, pred in enumerate(preds): shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape if not len(pred): results.append({"det": [], "segment": []}) continue if proto is None: pred[:, :4] = ops.scale_boxes(input_hw, pred[:, :4], shape).round() results.append({"det": pred}) continue if retina_mask: pred[:, :4] = ops.scale_boxes(input_hw, pred[:, :4], shape).round() masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2]) # HWC segments = [ops.scale_segments(input_hw, x, shape, normalize=False) for x in ops.masks2segments(masks)] else: masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], input_hw, upsample=True) pred[:, :4] = ops.scale_boxes(input_hw, pred[:, :4], shape).round() segments = [ops.scale_segments(input_hw, x, shape, normalize=False) for x in ops.masks2segments(masks)] results.append({"det": pred[:, :6].numpy(), "segment": segments}) return results
这段代码用于处理预测结果,并将其存储在结果列表`results`中。以下是代码的解释:
1. `for i, pred in enumerate(preds):`:遍历预测结果列表`preds`,同时获取索引`i`和对应的预测结果`pred`。
2. `shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape`:根据输入图像`orig_img`的类型,获取图像形状`shape`。如果`orig_img`是列表,则获取第`i`个图像的形状;否则,获取整个图像的形状。
3. `if not len(pred): results.append({"det": [], "segment": []}) continue`:如果预测结果为空,即没有检测到目标物体,则将空的检测结果和分割结果添加到列表`results`中,并进入下一次循环。
4. `if proto is None: pred[:, :4] = ops.scale_boxes(input_hw, pred[:, :4], shape).round() results.append({"det": pred}) continue`:如果`proto`为空,表示不进行分割操作。则对预测结果中的边界框坐标进行缩放和四舍五入操作,并将预测结果添加到列表`results`中。
5. `if retina_mask: ... else: ...`:根据是否采用了RetinaMask模型,选择不同的分割处理方式。
- 如果使用了RetinaMask模型:
- 对预测结果中的边界框坐标进行缩放和四舍五入操作。
- 使用`ops.process_mask_native`函数对预测结果中的掩膜进行处理,得到分割掩膜。
- 使用`ops.masks2segments`函数将掩膜转换为分割区域。
- 对分割区域进行缩放操作,并将结果添加到列表`segments`中。
- 如果没有使用RetinaMask模型:
- 使用`ops.process_mask`函数对预测结果中的掩膜进行处理,得到分割掩膜。
- 对预测结果中的边界框坐标进行缩放和四舍五入操作。
- 使用`ops.masks2segments`函数将掩膜转换为分割区域。
- 对分割区域进行缩放操作,并将结果添加到列表`segments`中。
6. `results.append({"det": pred[:, :6].numpy(), "segment": segments})`:将处理后的检测结果和分割结果添加到列表`results`中。
7. 最后,函数返回结果列表`results`,其中包含了处理后的检测和分割结果。
阅读全文