for true_mask, pred in zip(true_masks, masks_pred):

时间: 2024-04-26 12:24:57 浏览: 5
这是一段 Python 代码,使用了 zip 函数来同时迭代 true_masks 和 masks_pred 两个列表,并将它们的元素一一对应起来进行操作。具体来说,循环中的每次迭代会将 true_masks 和 masks_pred 中相同位置的元素作为 true_mask 和 pred 两个变量的值,然后执行相应的操作。在这里,true_mask 可能是一个布尔值,而 pred 则是一个预测出来的掩码值。
相关问题

if cfg.deepsupervision: masks_preds = net(imgs) loss = 0 for masks_pred in masks_preds: tot_cross_entropy = 0 for true_mask, pred in zip(true_masks, masks_pred): pred = (pred > cfg.out_threshold).float() #二值化处理 if cfg.n_classes > 1: sub_cross_entropy = F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0).squeeze(1)).item()#计算损失 else: sub_cross_entropy = dice_coeff(pred, true_mask.squeeze(dim=1)).item()#预测分割掩码和真实标签相似度,将两个结果转化为二值化的掩码,然后计算交集并集 tot_cross_entropy += sub_cross_entropy #计算总损失 tot_cross_entropy = tot_cross_entropy / len(masks_preds) #计算平均损失 tot += tot_cross_entropy #计算总平均损失 else: masks_pred = net(imgs) for true_mask, pred in zip(true_masks, masks_pred): pred = (pred > cfg.out_threshold).float() if cfg.n_classes > 1: tot += F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0).squeeze(1)).item() else: tot += dice_coeff(pred, true_mask.squeeze(dim=1)).item() pbar.update(imgs.shape[0])

这段代码是语义分割任务中的损失计算部分,其中使用了深监督(Deep Supervision)的方法。在深监督中,一个模型通常会产生多个输出,每个输出都对应着不同的层或分支,在训练过程中,每个输出都会计算一次损失,并反向传播更新梯度。这个方法可以有效地加快模型的收敛速度,并提高模型的鲁棒性。 如果cfg.deepsupervision为True,表示使用深监督方法。代码首先使用网络net对输入图像imgs进行预测,得到多个预测掩码masks_pred。接下来,对于每一个预测掩码masks_pred,计算它与真实掩码true_masks之间的交叉熵损失或Dice系数损失,并将它们累加得到总的损失tot_cross_entropy。最后,将总的损失除以预测掩码的数量,得到平均损失tot_cross_entropy,并将它加到总平均损失tot中。 如果cfg.deepsupervision为False,表示不使用深监督方法。代码中仍然使用网络net对输入图像imgs进行预测,得到一个预测掩码masks_pred。接下来,计算它与真实掩码true_masks之间的交叉熵损失或Dice系数损失,并将它们累加得到总的损失tot。 最后,代码使用进度条pbar来显示训练的进度。其中pbar.update(imgs.shape[0])表示当前已经处理了多少张图片。

解释这段代码for i, pred in enumerate(preds): shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape if not len(pred): results.append({"det": [], "segment": []}) continue if proto is None: pred[:, :4] = ops.scale_boxes(input_hw, pred[:, :4], shape).round() results.append({"det": pred}) continue if retina_mask: pred[:, :4] = ops.scale_boxes(input_hw, pred[:, :4], shape).round() masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2]) # HWC segments = [ops.scale_segments(input_hw, x, shape, normalize=False) for x in ops.masks2segments(masks)] else: masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], input_hw, upsample=True) pred[:, :4] = ops.scale_boxes(input_hw, pred[:, :4], shape).round() segments = [ops.scale_segments(input_hw, x, shape, normalize=False) for x in ops.masks2segments(masks)] results.append({"det": pred[:, :6].numpy(), "segment": segments}) return results

这段代码用于处理预测结果,并将其存储在结果列表`results`中。以下是代码的解释: 1. `for i, pred in enumerate(preds):`:遍历预测结果列表`preds`,同时获取索引`i`和对应的预测结果`pred`。 2. `shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape`:根据输入图像`orig_img`的类型,获取图像形状`shape`。如果`orig_img`是列表,则获取第`i`个图像的形状;否则,获取整个图像的形状。 3. `if not len(pred): results.append({"det": [], "segment": []}) continue`:如果预测结果为空,即没有检测到目标物体,则将空的检测结果和分割结果添加到列表`results`中,并进入下一次循环。 4. `if proto is None: pred[:, :4] = ops.scale_boxes(input_hw, pred[:, :4], shape).round() results.append({"det": pred}) continue`:如果`proto`为空,表示不进行分割操作。则对预测结果中的边界框坐标进行缩放和四舍五入操作,并将预测结果添加到列表`results`中。 5. `if retina_mask: ... else: ...`:根据是否采用了RetinaMask模型,选择不同的分割处理方式。 - 如果使用了RetinaMask模型: - 对预测结果中的边界框坐标进行缩放和四舍五入操作。 - 使用`ops.process_mask_native`函数对预测结果中的掩膜进行处理,得到分割掩膜。 - 使用`ops.masks2segments`函数将掩膜转换为分割区域。 - 对分割区域进行缩放操作,并将结果添加到列表`segments`中。 - 如果没有使用RetinaMask模型: - 使用`ops.process_mask`函数对预测结果中的掩膜进行处理,得到分割掩膜。 - 对预测结果中的边界框坐标进行缩放和四舍五入操作。 - 使用`ops.masks2segments`函数将掩膜转换为分割区域。 - 对分割区域进行缩放操作,并将结果添加到列表`segments`中。 6. `results.append({"det": pred[:, :6].numpy(), "segment": segments})`:将处理后的检测结果和分割结果添加到列表`results`中。 7. 最后,函数返回结果列表`results`,其中包含了处理后的检测和分割结果。

相关推荐

import json import base64 from PIL import Image import io import cv2 import numpy as np from ultralytics import YOLO import supervision as sv def init_context(context): context.logger.info("Init context... 0%") model_path = "yolov8m-seg.pt" # YOLOV8模型放在nuclio目录下构建 model = YOLO(model_path) # Read the DL model context.user_data.model = model context.logger.info("Init context...100%") def handler(context, event): context.logger.info("Run yolo-v8-seg model") data = event.body buf = io.BytesIO(base64.b64decode(data["image"])) threshold = float(data.get("threshold", 0.35)) context.user_data.model.conf = threshold image = Image.open(buf) yolo_results = context.user_data.model(image, conf=threshold)[0] labels = yolo_results.names detections = sv.Detections.from_yolov8(yolo_results) detections = detections[detections.confidence > threshold] masks = detections.xy conf = detections.confidence class_ids = detections.class_id results = [] if masks.shape[0] > 0: for label, score, mask in zip(class_ids, conf, masks): # 将mask转换为轮廓 contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: points = [] for point in contour: x = point[0][0] y = point[0][1] points.append([x, y]) results.append({ "confidence": str(score), "label": labels.get(label, "unknown"), "points": points, "type": "polygon",}) return context.Response(body=json.dumps(results), headers={}, content_type='application/json', status_code=200)不用supervision 包 用别的方式解析

最新推荐

recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

JAVA3D的网络三维技术的设计与实现.zip

JAVA3D的网络三维技术的设计与实现
recommend-type

setuptools-11.3.1.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依