maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options)代码中maps是什么值
时间: 2023-06-25 12:05:19 浏览: 268
在这段代码中,`maps`是一个返回值,它是通过`pycolmap.incremental_mapping()`函数调用生成的。这个函数的作用是将输入的图像序列与已有的3D点云进行增量式匹配,从而生成一个新的3D点云和对应的相机位姿,即完成增量式重建。`maps`的具体内容取决于函数的实现方式,可能是一个包含重建结果的数据结构,比如一个字典或类对象,也可能是一个文件路径或文件对象,用于存储重建结果。如果想要了解更多关于`pycolmap`库的详细信息,可以参考官方文档:https://colmap.github.io/
相关问题
maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options)
这是一个使用 PyCOLMAP 库进行增量式三维重建的 Python 代码。PyCOLMAP 是一个基于 COLMAP 的 Python 接口,COLMAP 是一个开源的计算机视觉库,用于从图片序列中重建三维场景。在这段代码中,使用了 PyCOLMAP 库中的 incremental_mapping 函数,该函数使用指定的数据库路径、图片路径和输出路径,以及其他映射选项,执行增量式三维重建并将结果保存到指定的输出路径中。
详细解释一下这段代码,每一句都要进行注解:tgt = f'/kaggle/working/{dataset}-{scene}' # Generate a simple reconstruction with SIFT (https://en.wikipedia.org/wiki/Scale-invariant_feature_transform). if not os.path.isdir(tgt): os.makedirs(f'{tgt}/bundle') os.system(f'cp -r {src}/images {tgt}/images') database_path = f'{tgt}/database.db' sift_opt = pycolmap.SiftExtractionOptions() sift_opt.max_image_size = 1500 # Extract features at low resolution could significantly reduce the overall accuracy sift_opt.max_num_features = 8192 # Generally more features is better, even if behond a certain number it doesn't help incresing accuracy sift_opt.upright = True # rotation invariance device = 'cpu' t = time() pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True) print(len(os.listdir(f'{tgt}/images'))) print('TIMINGS --- Feature extraction', time() - t) t = time() matching_opt = pycolmap.SiftMatchingOptions() matching_opt.max_ratio = 0.85 # Ratio threshold significantly influence the performance of the feature extraction method. It varies depending on the local feature but also on the image type # matching_opt.max_distance = 0.7 matching_opt.cross_check = True matching_opt.max_error = 1.0 # The ransac error threshold could help to exclude less accurate tie points pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True) print('TIMINGS --- Feature matching', time() - t) t = time() mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.extract_colors = False mapper_options.min_model_size = 3 # Sometimes you want to impose the first image pair for initialize the incremental reconstruction mapper_options.init_image_id1 = -1 mapper_options.init_image_id2 = -1 # Choose which interior will be refined during BA mapper_options.ba_refine_focal_length = True mapper_options.ba_refine_principal_point = True mapper_options.ba_refine_extra_params = True maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options) print('TIMINGS --- Mapping', time() - t)
这段代码主要是使用 PyCOLMAP 库实现对图像的特征提取、特征匹配和增量式三维重建。具体解释如下:
```tgt = f'/kaggle/working/{dataset}-{scene}'```
定义了一个字符串变量 tgt,表示输出路径。
```if not os.path.isdir(tgt):```
如果输出路径不存在,则创建该路径。
```os.makedirs(f'{tgt}/bundle')```
在输出路径下创建子目录 bundle。
```os.system(f'cp -r {src}/images {tgt}/images')```
将源目录 src 中的 images 目录复制到输出路径下的 images 目录中。
```database_path = f'{tgt}/database.db'```
定义一个字符串变量 database_path,表示 PyCOLMAP 库中使用的数据库文件路径。
```sift_opt = pycolmap.SiftExtractionOptions()```
创建一个 SIFT 特征提取选项对象。
```sift_opt.max_image_size = 1500```
设置 SIFT 特征提取选项对象的最大图像尺寸为 1500×1500 像素。
```sift_opt.max_num_features = 8192```
设置 SIFT 特征提取选项对象的最大特征点数为 8192 个。
```sift_opt.upright = True```
设置 SIFT 特征提取选项对象的旋转不变性为 True,即不考虑图像旋转。
```device = 'cpu'```
定义一个字符串变量 device,表示计算设备类型。
```pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True)```
调用 PyCOLMAP 库中的 extract_features 函数,对输出路径下的图像进行 SIFT 特征提取,并将特征保存到数据库文件中。
```print(len(os.listdir(f'{tgt}/images')))```
输出输出路径下的图像数量。
```print('TIMINGS --- Feature extraction', time() - t)```
输出特征提取所花费的时间。
```matching_opt = pycolmap.SiftMatchingOptions()```
创建一个 SIFT 特征匹配选项对象。
```matching_opt.max_ratio = 0.85```
设置 SIFT 特征匹配选项对象的最大匹配比率为 0.85。
```matching_opt.max_distance = 0.7```
设置 SIFT 特征匹配选项对象的最大匹配距离为 0.7。
```matching_opt.cross_check = True```
设置 SIFT 特征匹配选项对象的交叉匹配为 True,即同时匹配两幅图像。
```matching_opt.max_error = 1.0```
设置 SIFT 特征匹配选项对象的最大误差为 1.0。
```pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True)```
调用 PyCOLMAP 库中的 match_exhaustive 函数,对数据库文件中的特征进行 SIFT 特征匹配,并将匹配结果保存到数据库文件中。
```print('TIMINGS --- Feature matching', time() - t)```
输出特征匹配所花费的时间。
```mapper_options = pycolmap.IncrementalMapperOptions()```
创建一个增量式三维重建选项对象。
```mapper_options.extract_colors = False```
设置增量式三维重建选项对象的颜色提取为 False,即不提取图像颜色信息。
```mapper_options.min_model_size = 3```
设置增量式三维重建选项对象的最小模型大小为 3。
```mapper_options.init_image_id1 = -1```
设置增量式三维重建选项对象的第一张图像的 ID 为 -1,表示不指定。
```mapper_options.init_image_id2 = -1```
设置增量式三维重建选项对象的第二张图像的 ID 为 -1,表示不指定。
```mapper_options.ba_refine_focal_length = True```
设置增量式三维重建选项对象的相机内参的优化为 True。
```mapper_options.ba_refine_principal_point = True```
设置增量式三维重建选项对象的相机主点的优化为 True。
```mapper_options.ba_refine_extra_params = True```
设置增量式三维重建选项对象的额外参数的优化为 True。
```maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options)```
调用 PyCOLMAP 库中的 incremental_mapping 函数,对数据库文件中的匹配结果进行增量式三维重建,并将重建结果保存到输出路径下的 bundle 目录中。
```print('TIMINGS --- Mapping', time() - t)```
输出增量式三维重建所花费的时间。
阅读全文