python实现三维的最短路径并绘制3维图像中的最短路径
时间: 2024-02-17 15:03:21 浏览: 101
实现三维的最短路径可以使用 Dijkstra 算法或者 A*算法。这里我们以 Dijkstra 算法为例。
首先,为了方便计算,我们可以将三维图像转化为一个带权有向图,其中每个像素点对应一个节点,相邻像素点之间的边权重为它们之间的距离。然后,我们可以以起点为起点,使用 Dijkstra 算法计算出到所有节点的最短路径。最后,我们可以根据最短路径来在三维图像中绘制出最短路径。
下面是 Python 代码实现:
```python
import numpy as np
import heapq
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 构建带权有向图
def build_graph(matrix):
graph = {}
rows, cols, depths = matrix.shape
for row in range(rows):
for col in range(cols):
for depth in range(depths):
node = (row, col, depth)
neighbors = []
if row > 0:
neighbors.append(((row-1, col, depth), matrix[row-1, col, depth]))
if row < rows-1:
neighbors.append(((row+1, col, depth), matrix[row+1, col, depth]))
if col > 0:
neighbors.append(((row, col-1, depth), matrix[row, col-1, depth]))
if col < cols-1:
neighbors.append(((row, col+1, depth), matrix[row, col+1, depth]))
if depth > 0:
neighbors.append(((row, col, depth-1), matrix[row, col, depth-1]))
if depth < depths-1:
neighbors.append(((row, col, depth+1), matrix[row, col, depth+1]))
graph[node] = neighbors
return graph
# Dijkstra 算法
def dijkstra(graph, start):
distances = {node: float('inf') for node in graph}
distances[start] = 0
queue = [(0, start)]
while queue:
current_distance, current_node = heapq.heappop(queue)
if current_distance > distances[current_node]:
continue
for neighbor, weight in graph[current_node]:
distance = current_distance + weight
if distance < distances[neighbor]:
distances[neighbor] = distance
heapq.heappush(queue, (distance, neighbor))
return distances
# 绘制最短路径
def plot_shortest_path(matrix, start, end, distances):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
rows, cols, depths = matrix.shape
for row in range(rows):
for col in range(cols):
for depth in range(depths):
if matrix[row, col, depth] == 1:
ax.scatter(row, col, depth, c='black', marker='o')
else:
ax.scatter(row, col, depth, c='white', marker='o')
node = end
path = [end]
while node != start:
shortest_distance = float('inf')
shortest_node = None
for neighbor, weight in graph[node]:
if distances[neighbor] < shortest_distance:
shortest_distance = distances[neighbor]
shortest_node = neighbor
path.append(shortest_node)
node = shortest_node
path.reverse()
for i in range(len(path)-1):
x1, y1, z1 = path[i]
x2, y2, z2 = path[i+1]
ax.plot([x1, x2], [y1, y2], [z1, z2], c='red')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
# 测试
matrix = np.array([
[[0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]],
[[0, 0, 1, 0], [1, 1, 1, 0], [0, 0, 0, 0], [0, 1, 1, 1]],
[[1, 1, 0, 0], [0, 0, 0, 1], [0, 1, 1, 1], [0, 1, 0, 0]],
[[1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [0, 0, 0, 0]]
])
graph = build_graph(matrix)
start = (0, 0, 0)
end = (3, 3, 3)
distances = dijkstra(graph, start)
plot_shortest_path(matrix, start, end, distances)
```
运行以上代码可以得到一个三维图像,并在图像中绘制出了起点到终点的最短路径。
阅读全文