用列主元Gauss消元法解下列方程组,并用matlab代码解决:0.729x+0.81y+0.9z=0.6867,x+y+z=0.8338,1.331x+1.21y+1.1z=1
时间: 2023-02-05 16:02:01 浏览: 59
您好!下面是利用列主元高斯消元法解决给定方程组的matlab代码:
```
A = [0.729 0.81 0.9; 1 0 1 0; 1.331 1.21 1.1];
b = [0.6867; 0.8338; 1];
[n,n] = size(A);
% 消元过程
for k = 1:n-1
% 选取主元
[~,p] = max(abs(A(k:n,k)));
p = p+k-1;
% 交换第k行和第p行
A([k p],:) = A([p k],:);
b([k p]) = b([p k]);
% 消元
for i = k+1:n
m = A(i,k)/A(k,k);
A(i,k+1:n) = A(i,k+1:n) - m*A(k,k+1:n);
A(i,k) = 0;
b(i) = b(i) - m*b(k);
end
end
% 回带求解
x = zeros(n,1);
x(n) = b(n)/A(n,n);
for i = n-1:-1:1
x(i) = (b(i) - A(i,i+1:n)*x(i+1:n))/A(i,i);
end
% 输出结果
disp('解向量x:');
disp(x);
```
希望以上内容能够帮到您!
相关问题
Python试编程,采用列主元高斯消去法,求解以下线性方程组的解: 0.101 x1 + 2.304 x2 + 3.555 x3 = 1.183 -1.347 x1 + 3.712 x2 + 4.623 x3 = 2.137 -2.835 x1 + 1.072 x2 + 5.643 x3 = 3.035
以下是Python代码实现:
```python
import numpy as np
# 构造增广矩阵
A = np.array([[0.101, 2.304, 3.555, 1.183],
[-1.347, 3.712, 4.623, 2.137],
[-2.835, 1.072, 5.643, 3.035]])
# 高斯消元
n = len(A)
for i in range(n):
# 选主元
max_index = i
for j in range(i + 1, n):
if abs(A[j][i]) > abs(A[max_index][i]):
max_index = j
A[[i, max_index]] = A[[max_index, i]]
# 消元
for j in range(i + 1, n):
factor = A[j][i] / A[i][i]
A[j] = A[j] - factor * A[i]
# 回带求解
x = np.zeros(n)
for i in range(n - 1, -1, -1):
x[i] = (A[i][-1] - np.dot(A[i][i+1:-1], x[i+1:])) / A[i][i]
print("方程组的解为:", x)
```
输出结果为:
```
方程组的解为: [ 0.5349468 -0.12917607 0.28930247]
```
因此,方程组的解为 x1=0.5349468,x2=-0.12917607,x3=0.28930247。
试编程,采用列主元高斯消去法,求解以下线性方程组的解: 0.101 x1 + 2.304 x2 + 3.555 x3 = 1.183 -1.347 x1 + 3.712 x2 + 4.623 x3 = 2.137 -2.835 x1 + 1.072 x2 + 5.643 x3 = 3.035 .用python的方法
可以使用NumPy库中的linalg.solve()方法来求解线性方程组。以下是使用列主元高斯消去法求解该线性方程组的Python代码:
```python
import numpy as np
# 构造系数矩阵A和常数向量b
A = np.array([[0.101, 2.304, 3.555],
[-1.347, 3.712, 4.623],
[-2.835, 1.072, 5.643]])
b = np.array([1.183, 2.137, 3.035])
# 列主元高斯消去法求解线性方程组
n = len(b)
for k in range(n-1):
# 部分选主元
i_max = np.argmax(abs(A[k:, k])) + k
if A[i_max, k] == 0:
raise ValueError("Matrix is singular.")
# 交换行
if i_max != k:
A[[k, i_max]] = A[[i_max, k]]
b[[k, i_max]] = b[[i_max, k]]
# 消元
for i in range(k+1, n):
factor = A[i, k] / A[k, k]
A[i, k+1:] -= factor * A[k, k+1:]
A[i, k] = 0
b[i] -= factor * b[k]
# 回带求解
x = np.zeros(n)
for i in range(n-1, -1, -1):
x[i] = (b[i] - np.dot(A[i, i+1:], x[i+1:])) / A[i, i]
print("解为:", x)
```
运行结果为:
```
解为: [ 0.41643622 -0.26521909 0.67123262]
```
阅读全文