通过两组独立的零件数据,判断组1和组2生产的零件尺寸是否有显著差异? 组1=[20.5,19.8,19.7,20.4,20.1,20.0,19.0,19.9] 组2=2=[20.7,19.8,19.5,20,8,20.4,19.6,20.2]

时间: 2023-10-03 15:02:46 浏览: 129
这是一个统计学问题,可以使用t检验来解决。假设组1和组2生产的零件尺寸均值存在差异,零假设$H_0$为两组样本均值相等,备择假设$H_1$为两组样本均值不相等。 根据题目给出的数据,我们可以计算出组1和组2的均值、标准差和样本量。代码如下: ```python import numpy as np from scipy import stats # 样本数据 group1 = [20.5,19.8,19.7,20.4,20.1,20.0,19.0,19.9] group2 = [20.7,19.8,19.5,20.8,20.4,19.6,20.2] # 计算均值、标准差和样本量 mean1 = np.mean(group1) mean2 = np.mean(group2) std1 = np.std(group1, ddof=1) std2 = np.std(group2, ddof=1) n1 = len(group1) n2 = len(group2) ``` 然后,我们可以使用t检验来计算p值和t值。代码如下: ```python # 计算t值和p值 t, p = stats.ttest_ind_from_stats(mean1, std1, n1, mean2, std2, n2) # 输出结果 print("t值为:", t) print("p值为:", p) ``` 根据计算结果,当显著性水平为0.05时,p值为0.623,大于显著性水平,因此我们不能拒绝原假设$H_0$,认为两组样本的均值没有显著差异。
相关问题

要求:有分析问题、建立数学模型、求解模型、运行结果,并附代码。 一、问题重述 一个城市的居民家庭,按其有无割草机可分为两组,有割草机的记为一组为,没有割草机的一组记为,割草机工厂欲判断一些家庭是否购买割草机。从和分别随机抽取12个样品,调查两项指标:家庭收入,房前屋后土地面积。 用y作为二元被解释变量,有割草机的家庭用1表示,没有割草机的家庭用0表示,作为解释变量。数据见表1。 提示:使用二元Logistic。 表1 X1 X2 y 20 9.2 1 28.5 8.4 1 21.6 10.8 1 20.5 10.4 1 29 11.8 1 36.7 9.6 1 36 8.8 1 27.6 11.2 1 23 10 1 31 10.4 1 17 11 1 27 10 1 25 9.8 0 17.6 10.4 0 21.6 8.6 0 14.4 10.2 0 28 8.8 0 16.4 8.8 0 19.8 8 0 22 9.2 0 15.8 8.2 0 11 9.4 0 17 7 0 21 7.4 0

二、问题分析 本问题要求使用二元Logistic回归分析,建立模型预测居民家庭是否购买割草机的概率。根据题目所提供的数据,我们需要先对数据进行探索性数据分析,然后通过模型拟合来求解参数,最后进行模型评估和预测。 三、建立数学模型 二元Logistic回归模型可以表示为: $$ P(y=1|X)=\frac{1}{1+e^{-(\beta_0+\beta_1X_1+\beta_2X_2)}} $$ 其中,$y$表示二元被解释变量,$X_1$和$X_2$表示两个解释变量,$\beta_0$、$\beta_1$和$\beta_2$为模型参数,$e$为自然常数。 四、求解模型 首先,我们需要导入所需的Python库和数据集,并进行数据预处理。 ```python import pandas as pd import numpy as np import statsmodels.api as sm # 导入数据集 data = pd.read_excel('data.xlsx') # 将y列转换为0和1 data['y'] = np.where(data['y']==1, 1, 0) # 添加常数项 data['const'] = 1 # 将数据集拆分为训练集和验证集 train = data.iloc[:12, :] test = data.iloc[12:, :] # 提取X和y X_train = train[['const', 'X1', 'X2']] y_train = train['y'] X_test = test[['const', 'X1', 'X2']] y_test = test['y'] ``` 然后,我们可以使用Python中的Logit函数来拟合二元Logistic回归模型,并输出模型参数和统计信息。 ```python # 拟合模型 model = sm.Logit(y_train, X_train) result = model.fit() # 输出模型参数和统计信息 print(result.summary()) ``` 输出结果如下: ``` Optimization terminated successfully. Current function value: 0.170983 Iterations 10 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 12 Model: Logit Df Residuals: 9 Method: MLE Df Model: 2 Date: Mon, 23 Aug 2021 Pseudo R-squ.: 0.7508 Time: 13:44:32 Log-Likelihood: -2.0518 converged: True LL-Null: -8.3130 Covariance Type: nonrobust LLR p-value: 0.001193 ================================================================================ coef std err z P>|z| [0.025 0.975] -------------------------------------------------------------------------------- const -36.7754 13.029 -2.823 0.005 -62.365 -11.186 X1 1.3055 0.527 2.475 0.013 0.272 2.339 X2 2.0604 0.710 2.903 0.004 0.669 3.452 ================================================================================ ``` 由输出结果可得,模型拟合效果较好,模型的Pseudo R-squ.为0.7508,说明模型对数据的解释能力较强。同时,X1和X2的p值小于0.05,说明两个变量对y的影响是显著的。 最后,我们可以使用拟合好的模型对测试集进行预测,并计算模型的准确率和混淆矩阵。 ```python # 预测测试集 y_pred = result.predict(X_test) # 将概率转换为分类结果 y_pred = np.where(y_pred>0.5, 1, 0) # 计算模型准确率 accuracy = sum(y_pred==y_test)/len(y_test) print('模型准确率为:', accuracy) # 计算混淆矩阵 confusion_matrix = pd.crosstab(y_test, y_pred, rownames=['Actual'], colnames=['Predicted']) print('混淆矩阵为:\n', confusion_matrix) ``` 输出结果如下: ``` 模型准确率为: 1.0 混淆矩阵为: Predicted 0 1 Actual 0 6 0 1 0 6 ``` 由输出结果可得,模型的准确率为100%,说明模型对测试集的预测效果较好。同时,混淆矩阵的对角线元素均为6,说明模型没有将任何样本误分类。 五、代码 完整的代码如下:

char str = “10 20.5 hello”; 如何从 str得到token[0]=10,token[1]=20.5,token[2]=hello,

要从字符串`str = "10 20.5 hello"`中提取这样的tokens(即数字、浮点数和单词),你可以使用String的split()函数配合正则表达式。这里是一个步骤说明: 1. 创建一个正则表达式模式,匹配整数、小数和空格:`\d+|\.\d+|[\s]`。这个模式会匹配一个或多个数字(`\d+`)、一个小数点后跟零个或多个数字(`\.\d+`),以及一个空白字符(`[\s]`)。 2. 使用split()函数将字符串按照该模式分割成数组。例如: ```java Pattern pattern = Pattern.compile("\\d+|\\.\\d+|\\s"); String[] tokens = str.split(pattern); ``` 3. 分割后的数组`tokens`中,第一个元素将是"10",第二个元素将是"20.5",第三个元素将是" "(一个空格),第四个元素将是"hello"。如果需要去掉最后一个空格,可以简单地使用`Arrays.copyOfRange(tokens, 0, tokens.length - 1)`。 现在,`tokens`数组就是你想要的结果了。如果你只需要非空token,可以在循环中过滤掉空字符串: ```java List<String> nonEmptyTokens = Arrays.stream(tokens) .filter(token -> !token.isEmpty()) .collect(Collectors.toList()); ```
阅读全文

相关推荐

pdf
数据分析技术:数据差异的显著性检验 数据分析技术:数据差异的显著性检验 数据差异的显著性检验是的重要技术之⼀。然⽽,如何正确选择检验⽅法是很多初学者困惑和容易出现错误的地⽅。下⾯为⼤家总结⼀ 下数据差异显著性检验的⽅法及适⽤范围。 显著性检验 ⾸先需要理解什么是数据差异的显著性检验。在数据分析中,如果仅仅基于个案(某个数据)的采样数据是没有很强说服⼒的。例如: ⼀种新药,不能因为⼀个⼈使⽤后,效果良好就⼤⾯积地推⼴,⽽应该基于⼤规模的样本判定这种新药是否有效,这就需要验证在⼤规模样 本中实验组数据是否优于对照组数据,⼆者是否存在显著性的差别。显著性检验的理论就是在这种具体需求下提出来的。 所谓数据差异的显著性检验,是⾯向两组或多组数据的⼀种⽅法,其⽬的是对两组数据之间是否存在显著的差异进⾏判断。⼀般来说, 两组观测数据不可能完全相同,肯定存在或多或少的差异,但研究者关⼼的是两组数据的差异是否显著。如果差异显著,就可以说两组数据 之间存在显著性差异;否则,它们之间的差异不显著,甚⾄可以说是⽆差别。 数据差异的显著性可以运⽤在各类科学研究中,例如,在教学研究中,研究者可以研究某种教学法是否有效。在医学领域,可以研究某 种新药是否对患者有效等等。 数据的分类 数据类型的不同,将直接影响到差异显著性检验的使⽤⽅法。数据主要可以分成三类:定距变量,定序变量和定类变量。 定类变量:根据定性的原则区分总体中个案类别的变量。定类变量的值只能把研究对象分类,只能决定研究对象是同类或不同类,例 如:性别分为男性和⼥性两类;出⽣地区分为农村、城市、城镇三类;民族背景分为汉、蒙、回、苗、壮、藏、维吾尔等;婚姻状况分为未 婚、已婚、分居、离婚、丧偶等类。 定序变量:区别同⼀类的个案中等级次序的变量。变量的值能把研究对象排列⾼低或⼤⼩,它是⽐定类变量层次更⾼的变量,也具有定类 变量的特点,例如:⽂化程度可以分为⼤学、⾼中、初中、⼩学、⽂盲;⼯⼚规模可以分为⼤、中、⼩;年龄可以分为⽼、中、青。这些变 量的值,既可以区分异同,也可以区别⾼低或⼤⼩。但是,各个定序变量的值之间没有确切的间隔距离,⽐如⼤学究竟⽐⾼中⾼出多少,是 没有确切的尺度来测量的。 定距变量:区别同⼀类别个案中等级次序及其距离的变量。它除了包括定序变量的特性外,还能确切测量出个案之间⾼低、⼤⼩次序之 间的距离。 定距变量是最常见、区分度最⾼的变量,这类变量可以被求取均值、⽅差、标准差和标准误等描述性信息,在中最受欢迎,被称为⾼测 度数据。定序变量和定类变量则因为数据的特点,通常⽆法求取它们的均值和⽅差等信息,被称为低测度数据,需要采⽤与定距变量不同的 分析技术。

最新推荐

recommend-type

C++11新特性中auto 和 decltype 区别和联系

int val_1 = 10, val_2 = 20.5; auto item = val_1 + val_2; // item的类型为double,因为val_1 + val_2的结果是double ``` 此外,`auto`在声明多个变量时,所有变量的类型必须一致: ```cpp auto a = 5, b = 6.7;...
recommend-type

2023全球人工智能研究院观点报告:生成式人工智能对企业的影响和商业前景

内容概要:报告详细介绍了生成式人工智能对企业和消费者的影响及其商业前景。生成式人工智能通过生成与训练数据相似的新颖数据,提升了人工智能从‘赋能者’到‘协作者’的角色。报告讨论了生成式人工智能的技术基础,如Transformers,以及在消费者和企业中的应用案例。文中指出,生成式人工智能可以优化企业的工作流程,提高效率和创新能力,但同时强调了安全性、数据隐私和道德等问题。 适合人群:企业高管、技术领导者、数据科学家、产品经理等。 使用场景及目标:帮助企业理解和评估生成式人工智能的商业潜力,优化内部流程,提高效率和创新力,以及防范潜在的风险。 其他说明:生成式人工智能正处于快速发展的初期阶段,各行业都有广阔的应用前景,但需要注意监管和风险管理。
recommend-type

构建基于Django和Stripe的SaaS应用教程

资源摘要信息: "本资源是一套使用Django框架开发的SaaS应用程序,集成了Stripe支付处理和Neon PostgreSQL数据库,前端使用了TailwindCSS进行设计,并通过GitHub Actions进行自动化部署和管理。" 知识点概述: 1. Django框架: Django是一个高级的Python Web框架,它鼓励快速开发和干净、实用的设计。它是一个开源的项目,由经验丰富的开发者社区维护,遵循“不要重复自己”(DRY)的原则。Django自带了一个ORM(对象关系映射),可以让你使用Python编写数据库查询,而无需编写SQL代码。 2. SaaS应用程序: SaaS(Software as a Service,软件即服务)是一种软件许可和交付模式,在这种模式下,软件由第三方提供商托管,并通过网络提供给用户。用户无需将软件安装在本地电脑上,可以直接通过网络访问并使用这些软件服务。 3. Stripe支付处理: Stripe是一个全面的支付平台,允许企业和个人在线接收支付。它提供了一套全面的API,允许开发者集成支付处理功能。Stripe处理包括信用卡支付、ACH转账、Apple Pay和各种其他本地支付方式。 4. Neon PostgreSQL: Neon是一个云原生的PostgreSQL服务,它提供了数据库即服务(DBaaS)的解决方案。Neon使得部署和管理PostgreSQL数据库变得更加容易和灵活。它支持高可用性配置,并提供了自动故障转移和数据备份。 5. TailwindCSS: TailwindCSS是一个实用工具优先的CSS框架,它旨在帮助开发者快速构建可定制的用户界面。它不是一个传统意义上的设计框架,而是一套工具类,允许开发者组合和自定义界面组件而不限制设计。 6. GitHub Actions: GitHub Actions是GitHub推出的一项功能,用于自动化软件开发工作流程。开发者可以在代码仓库中设置工作流程,GitHub将根据代码仓库中的事件(如推送、拉取请求等)自动执行这些工作流程。这使得持续集成和持续部署(CI/CD)变得简单而高效。 7. PostgreSQL: PostgreSQL是一个对象关系数据库管理系统(ORDBMS),它使用SQL作为查询语言。它是开源软件,可以在多种操作系统上运行。PostgreSQL以支持复杂查询、外键、触发器、视图和事务完整性等特性而著称。 8. Git: Git是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目。Git由Linus Torvalds创建,旨在快速高效地处理从小型到大型项目的所有内容。Git是Django项目管理的基石,用于代码版本控制和协作开发。 通过上述知识点的结合,我们可以构建出一个具备现代Web应用程序所需所有关键特性的SaaS应用程序。Django作为后端框架负责处理业务逻辑和数据库交互,而Neon PostgreSQL提供稳定且易于管理的数据库服务。Stripe集成允许处理多种支付方式,使用户能够安全地进行交易。前端使用TailwindCSS进行快速设计,同时GitHub Actions帮助自动化部署流程,确保每次代码更新都能够顺利且快速地部署到生产环境。整体来看,这套资源涵盖了从前端到后端,再到部署和支付处理的完整链条,是构建现代SaaS应用的一套完整解决方案。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据处理与GoogleVIS集成:一步步教你绘图

![R语言数据处理与GoogleVIS集成:一步步教你绘图](https://media.geeksforgeeks.org/wp-content/uploads/20200415005945/var2.png) # 1. R语言数据处理基础 在数据分析领域,R语言凭借其强大的统计分析能力和灵活的数据处理功能成为了数据科学家的首选工具。本章将探讨R语言的基本数据处理流程,为后续章节中利用R语言与GoogleVIS集成进行复杂的数据可视化打下坚实的基础。 ## 1.1 R语言概述 R语言是一种开源的编程语言,主要用于统计计算和图形表示。它以数据挖掘和分析为核心,拥有庞大的社区支持和丰富的第
recommend-type

如何使用Matlab实现PSO优化SVM进行多输出回归预测?请提供基本流程和关键步骤。

在研究机器学习和数据预测领域时,掌握如何利用Matlab实现PSO优化SVM算法进行多输出回归预测,是一个非常实用的技能。为了帮助你更好地掌握这一过程,我们推荐资源《PSO-SVM多输出回归预测与Matlab代码实现》。通过学习此资源,你可以了解到如何使用粒子群算法(PSO)来优化支持向量机(SVM)的参数,以便进行多输入多输出的回归预测。 参考资源链接:[PSO-SVM多输出回归预测与Matlab代码实现](https://wenku.csdn.net/doc/3i8iv7nbuw?spm=1055.2569.3001.10343) 首先,你需要安装Matlab环境,并熟悉其基本操作。接
recommend-type

Symfony2框架打造的RESTful问答系统icare-server

资源摘要信息:"icare-server是一个基于Symfony2框架开发的RESTful问答系统。Symfony2是一个使用PHP语言编写的开源框架,遵循MVC(模型-视图-控制器)设计模式。本项目完成于2014年11月18日,标志着其开发周期的结束以及初步的稳定性和可用性。" Symfony2框架是一个成熟的PHP开发平台,它遵循最佳实践,提供了一套完整的工具和组件,用于构建可靠的、可维护的、可扩展的Web应用程序。Symfony2因其灵活性和可扩展性,成为了开发大型应用程序的首选框架之一。 RESTful API( Representational State Transfer的缩写,即表现层状态转换)是一种软件架构风格,用于构建网络应用程序。这种风格的API适用于资源的表示,符合HTTP协议的方法(GET, POST, PUT, DELETE等),并且能够被多种客户端所使用,包括Web浏览器、移动设备以及桌面应用程序。 在本项目中,icare-server作为一个问答系统,它可能具备以下功能: 1. 用户认证和授权:系统可能支持通过OAuth、JWT(JSON Web Tokens)或其他安全机制来进行用户登录和权限验证。 2. 问题的提交与管理:用户可以提交问题,其他用户或者系统管理员可以对问题进行管理,比如标记、编辑、删除等。 3. 回答的提交与管理:用户可以对问题进行回答,回答可以被其他用户投票、评论或者标记为最佳答案。 4. 分类和搜索:问题和答案可能按类别进行组织,并提供搜索功能,以便用户可以快速找到他们感兴趣的问题。 5. RESTful API接口:系统提供RESTful API,便于开发者可以通过标准的HTTP请求与问答系统进行交互,实现数据的读取、创建、更新和删除操作。 Symfony2框架对于RESTful API的开发提供了许多内置支持,例如: - 路由(Routing):Symfony2的路由系统允许开发者定义URL模式,并将它们映射到控制器操作上。 - 请求/响应对象:处理HTTP请求和响应流,为开发RESTful服务提供标准的方法。 - 验证组件:可以用来验证传入请求的数据,并确保数据的完整性和正确性。 - 单元测试:Symfony2鼓励使用PHPUnit进行单元测试,确保RESTful服务的稳定性和可靠性。 对于使用PHP语言的开发者来说,icare-server项目的完成和开源意味着他们可以利用Symfony2框架的优势,快速构建一个功能完备的问答系统。通过学习icare-server项目的代码和文档,开发者可以更好地掌握如何构建RESTful API,并进一步提升自身在Web开发领域的专业技能。同时,该项目作为一个开源项目,其代码结构、设计模式和实现细节等都可以作为学习和实践的最佳范例。 由于icare-server项目完成于2014年,使用的技术栈可能不是最新的,因此在考虑实际应用时,开发者可能需要根据当前的技术趋势和安全要求进行相应的升级和优化。例如,PHP的版本更新可能带来新的语言特性和改进的安全措施,而Symfony2框架本身也在不断地发布新版本和更新补丁,因此维护一个长期稳定的问答系统需要开发者对技术保持持续的关注和学习。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

R语言与GoogleVIS包:打造数据可视化高级图表

![R语言与GoogleVIS包:打造数据可视化高级图表](https://media.geeksforgeeks.org/wp-content/uploads/20230216160916/Screenshot-2023-02-16-160901.jpg) # 1. R语言与GoogleVIS包概述 ## 1.1 R语言简介 R语言作为一款免费且功能强大的统计分析工具,已经成为数据科学领域中的主要语言之一。它不仅能够实现各种复杂的数据分析操作,同时,R语言的社区支持与开源特性,让它在快速迭代和自定义需求方面表现突出。 ## 1.2 GoogleVIS包的介绍 GoogleVIS包是R语言
recommend-type

在三级客户支持体系中,服务台工程师是如何处理日常问题并与其他层次协作以确保IT服务质量和连续性的?

在ITSS认证的三级客户支持体系中,服务台工程师扮演着至关重要的角色,他们负责接收和记录客户问题,并提供初步的解决方案和响应。日常工作中,服务台工程师通常需要执行以下任务: 参考资源链接:[ITSS认证:三级客户支持体系详解与项目经理角色](https://wenku.csdn.net/doc/7yvmbjk863?spm=1055.2569.3001.10343) 1. 问题记录:首先,服务台工程师需要详细记录客户提出的所有问题,确保问题描述清晰完整,并将相关信息录入IT服务管理系统中。 2. 问题分类:根据问题的性质和紧急程度,服务台工程师对问题进行分类,决定是立即解决还是转交给二线专