卷积码欧几里得算法盲识别matlab代码
时间: 2023-12-05 13:04:56 浏览: 82
BCC卷积码的维特比译码算法_matlab
5星 · 资源好评率100%
卷积码欧几里得算法盲识别的 Matlab 代码如下:
```matlab
function [decodedBits] = BlindConvolutionalDecoding(receivedBits, constraintLength, generatorPolynomials)
% Function to perform blind convolutional decoding on the received bits
% receivedBits - the received bits
% constraintLength - constraint length of the convolutional encoder
% generatorPolynomials - generator polynomials of the convolutional encoder
% Calculate the number of states in the convolutional encoder
numStates = 2^(constraintLength-1);
% Generate the state transition table for the convolutional encoder
stateTable = GenerateStateTable(constraintLength);
% Generate the trellis for the convolutional encoder
trellis = poly2trellis(constraintLength, generatorPolynomials);
% Initialize the distances and survivor paths for each state
distances = Inf(numStates, 1);
survivors = zeros(numStates, constraintLength);
% Initialize the distances for the initial state
distances(1) = 0;
% Loop through the received bits
for i = 1:length(receivedBits)
% Calculate the distances for each possible transition
for j = 1:numStates
% Calculate the current state
currentState = j-1;
% Calculate the input bit for the current state
if currentState == 0
inputBit = 0;
else
inputBit = receivedBits(i);
end
% Calculate the output bits for the current state and input bit
outputBits = convenc([currentState, inputBit], trellis);
% Calculate the next state for each possible output bit
for k = 1:length(outputBits)/2
% Calculate the next state for the current output bit
nextState = stateTable(j, outputBits(2*k-1)*2+outputBits(2*k));
% Calculate the distance for the current transition
distance = distances(j) + (receivedBits(i)~=outputBits(2*k-1)) + (receivedBits(i+1)~=outputBits(2*k));
% Update the distances and survivor paths if the distance is lower
if distance < distances(nextState+1)
distances(nextState+1) = distance;
survivors(nextState+1, :) = [survivors(j, 2:end), outputBits(2*k-1)];
end
end
end
end
% Find the state with the minimum distance
[minDistance, minState] = min(distances);
% Extract the decoded bits from the survivor path of the minimum distance state
decodedBits = survivors(minState, :);
% Remove the initial zeros from the decoded bits
decodedBits = decodedBits(constraintLength:end);
end
function [stateTable] = GenerateStateTable(constraintLength)
% Function to generate the state transition table for a convolutional encoder
% constraintLength - constraint length of the convolutional encoder
% Calculate the number of states in the convolutional encoder
numStates = 2^(constraintLength-1);
% Initialize the state transition table
stateTable = zeros(numStates, 4);
% Loop through each state
for i = 1:numStates
% Convert the state to binary and pad with zeros
state = dec2bin(i-1, constraintLength-1);
state = ['0', state];
% Calculate the output bits and next state for each possible input bit
for j = 0:1
inputBit = num2str(j);
% Calculate the output bits for the current state and input bit
outputBits = convenc([bin2dec(state), j], poly2trellis(constraintLength, [1 1 1]));
% Convert the output bits to binary and pad with zeros
outputBits = dec2bin(outputBits, 2);
outputBits = reshape(outputBits.', 1, []);
% Convert the next state to decimal
nextState = bin2dec(state(2:end));
nextState = bitshift(nextState, 1);
nextState = nextState + j;
% Update the state transition table
stateTable(i, j*2+1:j*2+2) = outputBits;
stateTable(i, j*2+3:j*2+4) = nextState;
end
end
end
```
其中,`receivedBits` 是接收到的码字,`constraintLength` 是卷积码的约束长度,`generatorPolynomials` 是卷积码的生成多项式。函数首先生成卷积码的状态转移表和状态图,然后利用欧几里得算法进行盲识别,最后提取出解码后的比特流。
阅读全文