for i in range(num_convs): if i == 0: trans = FCLayer(in_channels, conv_channels, bias=True, activation=None) conv = DenseEdgeConv( conv_channels, num_fc_layers=conv_num_fc_layers, growth_rate=conv_growth_rate, knn=conv_knn, aggr=conv_aggr, activation=activation, relative_feat_only=True ) else: trans = FCLayer(in_channels, conv_channels, bias=True, activation=activation) conv = DenseEdgeConv( conv_channels, num_fc_layers=conv_num_fc_layers, growth_rate=conv_growth_rate, knn=conv_knn, aggr=conv_aggr, activation=activation, relative_feat_only=False ) self.transforms.append(trans) self.convs.append(conv) in_channels = conv.out_channels
时间: 2024-02-11 16:17:36 浏览: 107
这段代码是一个类的初始化方法,其中包含了一个多层的DenseEdgeConv神经网络模型。代码中的循环语句用来构建多层DenseEdgeConv模块,每一层都由一个FCLayer(全连接层)和一个DenseEdgeConv模块组成。其中第一层的FCLayer没有激活函数,后续层的FCLayer使用了激活函数。在循环中,将每个转换层和卷积层添加到ModuleList中,并将卷积层的输出大小作为下一层转换层的输入大小。最终,这个类就是一个包含多层DenseEdgeConv模块的神经网络模型。
相关问题
self.transforms = ModuleList() self.convs = ModuleList() for i in range(num_convs): if i == 0: trans = FCLayer(in_channels, conv_channels, bias=True, activation=None) conv = DenseEdgeConv( conv_channels, num_fc_layers=conv_num_fc_layers, growth_rate=conv_growth_rate, knn=conv_knn, aggr=conv_aggr, activation=activation, relative_feat_only=True ) else: trans = FCLayer(in_channels, conv_channels, bias=True, activation=activation) conv = DenseEdgeConv( conv_channels, num_fc_layers=conv_num_fc_layers, growth_rate=conv_growth_rate, knn=conv_knn, aggr=conv_aggr, activation=activation, relative_feat_only=False ) self.transforms.append(trans) self.convs.append(conv) in_channels = conv.out_channels
这段代码是一个神经网络模型的定义,其中包含了多个层。在这个模型中,首先创建了两个空的ModuleList(),命名为transforms和convs,用于存储后续创建的层。然后通过for循环,依次创建num_convs个层。当i为0时,创建的是一个FCLayer和一个DenseEdgeConv,其中FCLayer是全连接层,DenseEdgeConv是基于边缘卷积的网络层。当i不为0时,创建的是一个带激活函数的FCLayer和一个带有完整特征的DenseEdgeConv。每次创建完层之后,将层添加到transforms和convs中,并更新in_channels的值。最终,这个模型的输出是convs中最后一层的输出。
class DenseBlock(nn.Module): def __init__(self, num_convs, input_channels, num_channels): super(DenseBlock, self).__init__() layer = [] for i in range(num_convs): layer.append(conv_block( num_channels * i + input_channels, num_channels)) self.net = nn.Sequential(*layer) def forward(self, X): for blk in self.net: Y = blk(X) # 连接通道维度上每个块的输入和输出 X = torch.cat((X, Y), dim=1) return X
这段代码实现了一个 DenseBlock,它是 DenseNet 网络中的一个重要模块。DenseBlock 的输入是一个张量 X,包含 input_channels 个通道,输出是一个张量 Y,包含 num_channels 个通道。DenseBlock 包含 num_convs 个卷积层,每个卷积层的输入是前面所有层的输出以及输入张量 X 的拼接,输出是 num_channels 个通道的特征图。每个卷积层的具体实现由 conv_block 函数定义。在前向计算过程中,每个卷积层的输出都与输入张量 X 进行拼接,作为下一层的输入。最终,DenseBlock 的输出张量包含 num_convs * num_channels 个通道,可以作为下一个 DenseBlock 或者全局平均池化层的输入。
阅读全文