模拟退火算法求解背包问题python代码
时间: 2023-07-07 17:19:42 浏览: 259
以下是使用模拟退火算法求解背包问题的 Python 代码示例:
```python
import random
import math
# 背包问题求解函数
def knapsack(capacity, weights, values, max_iterations):
# 初始化当前解和最佳解
current_solution = [random.randint(0, 1) for i in range(len(weights))]
best_solution = current_solution[:]
# 计算当前解的价值和重量
current_weight = sum([current_solution[i]*weights[i] for i in range(len(weights))])
current_value = sum([current_solution[i]*values[i] for i in range(len(values))])
# 初始化温度和降温速率
temperature = 100
cooling_rate = 0.03
# 迭代求解
for i in range(max_iterations):
# 生成一个新解
new_solution = current_solution[:]
index = random.randint(0, len(weights)-1)
new_solution[index] = 1 - new_solution[index] # 取反操作
# 计算新解的价值和重量
new_weight = sum([new_solution[i]*weights[i] for i in range(len(weights))])
new_value = sum([new_solution[i]*values[i] for i in range(len(values))])
# 计算能量差
delta_e = new_value - current_value
# 如果新解更优,则接受该解
if new_weight <= capacity and delta_e > 0:
current_solution = new_solution[:]
current_weight = new_weight
current_value = new_value
# 更新最佳解
if current_value > sum([best_solution[i]*values[i] for i in range(len(values))]):
best_solution = current_solution[:]
# 如果新解不优,则以一定概率接受该解
else:
probability = math.exp(delta_e/temperature)
if random.random() < probability:
current_solution = new_solution[:]
current_weight = new_weight
current_value = new_value
# 降温
temperature *= 1 - cooling_rate
# 返回最佳解
return best_solution
# 测试
capacity = 50
weights = [10, 20, 30, 40, 50]
values = [20, 30, 66, 40, 60]
max_iterations = 10000
best_solution = knapsack(capacity, weights, values, max_iterations)
best_weight = sum([best_solution[i]*weights[i] for i in range(len(weights))])
best_value = sum([best_solution[i]*values[i] for i in range(len(values))])
print("最佳解:", best_solution)
print("最佳重量:", best_weight)
print("最佳价值:", best_value)
```
这段代码中,我们通过模拟退火算法求解背包问题。首先,我们初始化当前解和最佳解为随机解,然后计算当前解的价值和重量。接着,我们初始化温度和降温速率,进行迭代求解。在每次迭代中,我们生成一个新解,计算新解的价值和重量,然后计算能量差。如果新解更优,则接受该解;否则,以一定概率接受该解。最后,我们返回最佳解。
阅读全文