模拟退火算法求解01背包问题python代码
时间: 2023-07-07 13:09:57 浏览: 194
以下是使用模拟退火算法求解01背包问题的Python代码示例:
```python
import numpy as np
# 定义问题
def objective_function(x, weights, values, max_weight):
if np.sum(weights*x) > max_weight:
return -np.inf
else:
return np.sum(values*x)
# 初始化
n_variables = 10
max_weight = 50
weights = np.random.randint(1, 10, size=n_variables)
values = np.random.randint(1, 10, size=n_variables)
t_init = 100
t_min = 1
alpha = 0.99
n_iterations = 1000
current_solution = np.zeros(n_variables)
best_solution = np.zeros(n_variables)
best_objective = -np.inf
for i in range(n_variables):
current_solution[i] = np.random.randint(0, 2)
# 退火搜索
t = t_init
while t > t_min:
for i in range(n_iterations):
next_solution = np.copy(current_solution)
k = np.random.randint(0, n_variables)
next_solution[k] = 1 - next_solution[k]
objective = objective_function(next_solution, weights, values, max_weight)
if objective > best_objective:
best_solution = next_solution
best_objective = objective
delta_objective = objective - objective_function(current_solution, weights, values, max_weight)
if delta_objective < 0:
p = np.exp(delta_objective / t)
if np.random.rand() > p:
next_solution = current_solution
current_solution = next_solution
t *= alpha
# 输出最优解
print("Best solution:", best_solution)
print("Best objective:", best_objective)
```
在这个示例中,我们使用了背包问题中的重量和价值作为参数,定义了目标函数和约束条件。在初始化过程中,我们生成了10个物品的随机重量和价值,同时确定了背包的最大重量。在搜索过程中,我们通过改变当前解来产生下一个解,并通过目标函数计算目标值。如果下一个解的目标值比当前的最优解更好,则更新最优解。如果下一个解的目标值比当前解更差,则以一定概率接受劣解,以便跳出局部最优解。
需要注意的是,模拟退火算法的效果受到参数的影响,不同的参数设置可能会导致不同的搜索结果。因此,我们需要根据实际问题进行调整和优化。
阅读全文