struct a2v { float4 pos : POSITION; fixed4 color : COLOR; }; struct v2f { float4 vertex : SV_POSITION; fixed4 color : COLOR; }; v2f vert( a2v i ) { v2f o; o.vertex = UnityObjectToClipPos(i.pos); o.color = i.color; return o; } fixed4 frag( v2f i ) : COLOR { return i.color; }

时间: 2023-06-24 21:08:22 浏览: 44
这段代码是一个简单的 Unity Shader,主要是定义了两个结构体 a2v 和 v2f,分别表示输入和输出的顶点数据。在顶点着色器函数 vert 中,将输入的顶点位置转换为裁剪空间的坐标,并将颜色数据传递给输出结构体 v2f。在片元着色器函数 frag 中,直接将顶点颜色作为输出颜色。这个 Shader 可以用于渲染简单的几何体,比如立方体、球体等。
相关问题

使用以下代码实现图片黑白化时,透明区域不在透明显示:Shader "Custom/BlackAndWhite" { Properties { _MainTex ("Texture", 2D) = "white" {} } SubShader { Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag uniform sampler2D _MainTex; struct appdata { float4 vertex : POSITION; float2 uv : TEXCOORD0; }; struct v2f { float2 uv : TEXCOORD0; float4 vertex : SV_POSITION; }; v2f vert (appdata v) { v2f o; o.vertex = UnityObjectToClipPos(v.vertex); o.uv = v.uv; return o; } fixed4 frag (v2f i) : SV_Target { fixed4 col = tex2D(_MainTex, i.uv); float gray = dot(col.rgb, float3(0.299, 0.587, 0.114)); return fixed4(gray, gray, gray, col.a); } ENDCG } } FallBack "Diffuse" }

这段代码实现了一个自定义的黑白化着色器(Shader),使用了Unity Shader语言(CGPROGRAM)来编写顶点着色器(vertex)和片段着色器(fragment)。 其中,通过定义一个名为_MainTex的2D纹理(texture)属性,让Shader可以接收要处理的图片。顶点着色器将输入的顶点信息(POSITION和TEXCOORD0)转换为裁剪空间下的顶点位置(UnityObjectToClipPos)和纹理坐标(uv),片段着色器使用tex2D函数从_MainTex中读取像素颜色,然后计算出灰度值(gray)并返回一个新的颜色(fixed4)。 但是这段代码没有考虑到透明区域的处理,因此会出现透明区域显示为黑色的问题。要解决这个问题,可以在片段着色器中,根据像素的alpha值来判断是否透明,如果透明则直接返回一个透明的颜色,否则再进行黑白化处理。 修改后的代码如下所示: ``` Shader "Custom/BlackAndWhite" { Properties { _MainTex ("Texture", 2D) = "white" {} } SubShader { Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag uniform sampler2D _MainTex; struct appdata { float4 vertex : POSITION; float2 uv : TEXCOORD0; }; struct v2f { float2 uv : TEXCOORD0; float4 vertex : SV_POSITION; float4 color : COLOR; }; v2f vert (appdata v) { v2f o; o.vertex = UnityObjectToClipPos(v.vertex); o.uv = v.uv; o.color = tex2D(_MainTex, v.uv); return o; } fixed4 frag (v2f i) : SV_Target { if (i.color.a == 0) { return fixed4(0, 0, 0, 0); } else { float gray = dot(i.color.rgb, float3(0.299, 0.587, 0.114)); return fixed4(gray, gray, gray, i.color.a); } } ENDCG } } FallBack "Diffuse" } ``` 修改后的代码中,我们在顶点着色器中新增了一个color属性,用于记录每个像素的颜色信息。在片段着色器中,首先判断当前像素的alpha值是否为0,如果是则直接返回一个透明的颜色(fixed4(0, 0, 0, 0)),否则再进行黑白化处理。这样就可以避免透明区域显示为黑色的问题了。

Shader "Custom/Circle" { Properties { _Center("Center", Vector) = (0,0,0,0) _Radius("Radius", Range(0,1)) = 0.5 _Color("Color", Color) = (1,1,1,1) _MainTex("Texture", 2D) = "" } SubShader { Tags { "RenderType"="Opaque" } LOD 200 Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" struct appdata { float4 vertex : POSITION; float2 uv : TEXCOORD0; }; struct v2f { float4 vertex : SV_POSITION; float2 uv : TEXCOORD0; }; float4 _Center; float _Radius; float4 _Color; sampler2D _MainTex; v2f vert(appdata v) { v2f o; o.vertex = UnityObjectToClipPos(v.vertex); o.uv = v.uv; return o; } fixed4 frag(v2f i) : SV_TARGET0{ float2 uv = i.uv; float dist = distance(uv, _Center.xy); if(dist <= _Radius) { fixed4 texColor = tex2D(_MainTex, uv); return texColor * _Color; } else { discard; } } ENDCG } } FallBack "Diffuse" }

这是一个自定义的Shader代码示例,用于绘制一个圆形的渲染效果。该Shader在Unity中命名为"Custom/Circle"。 在这个Shader中,定义了几个属性用于控制圆形的位置、半径、颜色和纹理: 1. _Center:表示圆形的中心点位置,默认为(0,0,0,0)。 2. _Radius:表示圆形的半径,范围在0到1之间,默认为0.5。 3. _Color:表示圆形的颜色,默认为白色(1,1,1,1)。 4. _MainTex:表示圆形的纹理,为一个2D纹理,默认为空。 在SubShader中,使用了"RenderType"="Opaque"标签来指定渲染类型为不透明。LOD设置为200,表示使用中等级别的细节层次。 在Pass中,使用CGPROGRAM和ENDCG之间的代码块来定义顶点和片段着色器函数。 顶点着色器函数vert接收输入的顶点数据,并将顶点位置和纹理坐标传递给片段着色器函数frag。 片段着色器函数frag根据传入的纹理坐标计算与中心点的距离,并判断是否在半径范围内。如果在范围内,则从纹理中采样颜色,并与_Color属性相乘返回;否则,丢弃该像素。 最后,使用FallBack "Diffuse"指定了一个回退的渲染效果,即如果设备不支持该Shader,将使用Diffuse着色器作为回退方案。 这个Shader可以用于在物体表面绘制一个圆形区域,并根据纹理和颜色属性进行渲染。可以根据需要自定义属性值来实现不同的效果。

相关推荐

Shader "FancyScrollViewGallery/Metaball" { Properties { [PerRendererData] _MainTex ("Sprite Texture", 2D) = "white" {} _Color ("Tint", Color) = (1,1,1,1) _StencilComp ("Stencil Comparison", Float) = 8 _Stencil ("Stencil ID", Float) = 0 _StencilOp ("Stencil Operation", Float) = 0 _StencilWriteMask ("Stencil Write Mask", Float) = 255 _StencilReadMask ("Stencil Read Mask", Float) = 255 _ColorMask ("Color Mask", Float) = 15 [Toggle(UNITY_UI_ALPHACLIP)] _UseUIAlphaClip ("Use Alpha Clip", Float) = 0 } CGINCLUDE #include "UnityCG.cginc" #include "UnityUI.cginc" #include "../Common/Common.cginc" #include "Metaball.hlsl" #pragma multi_compile __ UNITY_UI_CLIP_RECT #pragma multi_compile __ UNITY_UI_ALPHACLIP struct appdata_t { float4 vertex : POSITION; float4 color : COLOR; float2 texcoord : TEXCOORD0; UNITY_VERTEX_INPUT_INSTANCE_ID }; struct v2f { float4 vertex : SV_POSITION; fixed4 color : COLOR; float2 uiCoord : TEXCOORD0; float4 worldPosition : TEXCOORD1; UNITY_VERTEX_OUTPUT_STEREO }; sampler2D _MainTex; fixed4 _Color; fixed4 _TextureSampleAdd; float4 _ClipRect; float4 _MainTex_ST; v2f vert(appdata_t v) { v2f OUT; UNITY_SETUP_INSTANCE_ID(v); UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(OUT); OUT.worldPosition = v.vertex; OUT.vertex = UnityObjectToClipPos(OUT.worldPosition); OUT.uiCoord = ui_coord(TRANSFORM_TEX(v.texcoord, _MainTex)); OUT.color = v.color * _Color; return OUT; } fixed4 frag(v2f i) : SV_Target { half4 color = metaball(i.uiCoord); color += _TextureSampleAdd; color *= i.color; #ifdef UNITY_UI_CLIP_RECT color.a *= UnityGet2DClipping(i.worldPosition.xy, _ClipRect); #endif #ifdef UNITY_UI_ALPHACLIP clip(color.a - 0.001); #endif return color; } ENDCG SubShader { Tags { "Queue"="Transparent" "IgnoreProjector"="True" "RenderType"="Transparent" "PreviewType"="Plane" "CanUseSpriteAtlas"="True" } Stencil { Ref [_Stencil] Comp [_StencilComp] Pass [_StencilOp] ReadMask [_StencilReadMask] WriteMask [_StencilWriteMask] } Cull Off Lighting Off ZWrite Off ZTest [unity_GUIZTestMode] Blend SrcAlpha OneMinusSrcAlpha ColorMask [_ColorMask] Pass { Name "Default" CGPROGRAM #pragma vertex vert #pragma fragment frag #pragma target 2.0 ENDCG } } }

最新推荐

recommend-type

Python使用struct处理二进制(pack和unpack用法)

有的时候需要用python处理二进制数据,比如,...pack(fmt, v1, v2, ...) # 按照给定的格式(fmt)解析字节流string,返回解析出来的tuple unpack(fmt, string) # 计算给定的格式(fmt)占用多少字节的内存 calcsize(fmt
recommend-type

C#中结构(struct)的部分初始化和完全初始化实例分析

主要介绍了C#中结构(struct)的部分初始化和完全初始化,通过实例分析了结构初始化中常见的错误及技巧,有助于加深对C#结构(struct)的认识,需要的朋友可以参考下
recommend-type

患者发生输液反应的应急预案及护理流程(医院护理资料).docx

患者发生输液反应的应急预案及护理流程(医院护理资料).docx
recommend-type

chromedriver-win64_121.0.6105.0.zip

chromedriver-win64_121.0.6105.0.zip
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依