struct a2v { float4 pos : POSITION; fixed4 color : COLOR; }; struct v2f { float4 vertex : SV_POSITION; fixed4 color : COLOR; }; v2f vert( a2v i ) { v2f o; o.vertex = UnityObjectToClipPos(i.pos); o.color = i.color; return o; } fixed4 frag( v2f i ) : COLOR { return i.color; }

时间: 2023-06-24 18:08:22 浏览: 45
这段代码是一个简单的 Unity Shader,主要是定义了两个结构体 a2v 和 v2f,分别表示输入和输出的顶点数据。在顶点着色器函数 vert 中,将输入的顶点位置转换为裁剪空间的坐标,并将颜色数据传递给输出结构体 v2f。在片元着色器函数 frag 中,直接将顶点颜色作为输出颜色。这个 Shader 可以用于渲染简单的几何体,比如立方体、球体等。
相关问题

使用以下代码实现图片黑白化时,透明区域不在透明显示:Shader "Custom/BlackAndWhite" { Properties { _MainTex ("Texture", 2D) = "white" {} } SubShader { Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag uniform sampler2D _MainTex; struct appdata { float4 vertex : POSITION; float2 uv : TEXCOORD0; }; struct v2f { float2 uv : TEXCOORD0; float4 vertex : SV_POSITION; }; v2f vert (appdata v) { v2f o; o.vertex = UnityObjectToClipPos(v.vertex); o.uv = v.uv; return o; } fixed4 frag (v2f i) : SV_Target { fixed4 col = tex2D(_MainTex, i.uv); float gray = dot(col.rgb, float3(0.299, 0.587, 0.114)); return fixed4(gray, gray, gray, col.a); } ENDCG } } FallBack "Diffuse" }

这段代码实现了一个自定义的黑白化着色器(Shader),使用了Unity Shader语言(CGPROGRAM)来编写顶点着色器(vertex)和片段着色器(fragment)。 其中,通过定义一个名为_MainTex的2D纹理(texture)属性,让Shader可以接收要处理的图片。顶点着色器将输入的顶点信息(POSITION和TEXCOORD0)转换为裁剪空间下的顶点位置(UnityObjectToClipPos)和纹理坐标(uv),片段着色器使用tex2D函数从_MainTex中读取像素颜色,然后计算出灰度值(gray)并返回一个新的颜色(fixed4)。 但是这段代码没有考虑到透明区域的处理,因此会出现透明区域显示为黑色的问题。要解决这个问题,可以在片段着色器中,根据像素的alpha值来判断是否透明,如果透明则直接返回一个透明的颜色,否则再进行黑白化处理。 修改后的代码如下所示: ``` Shader "Custom/BlackAndWhite" { Properties { _MainTex ("Texture", 2D) = "white" {} } SubShader { Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag uniform sampler2D _MainTex; struct appdata { float4 vertex : POSITION; float2 uv : TEXCOORD0; }; struct v2f { float2 uv : TEXCOORD0; float4 vertex : SV_POSITION; float4 color : COLOR; }; v2f vert (appdata v) { v2f o; o.vertex = UnityObjectToClipPos(v.vertex); o.uv = v.uv; o.color = tex2D(_MainTex, v.uv); return o; } fixed4 frag (v2f i) : SV_Target { if (i.color.a == 0) { return fixed4(0, 0, 0, 0); } else { float gray = dot(i.color.rgb, float3(0.299, 0.587, 0.114)); return fixed4(gray, gray, gray, i.color.a); } } ENDCG } } FallBack "Diffuse" } ``` 修改后的代码中,我们在顶点着色器中新增了一个color属性,用于记录每个像素的颜色信息。在片段着色器中,首先判断当前像素的alpha值是否为0,如果是则直接返回一个透明的颜色(fixed4(0, 0, 0, 0)),否则再进行黑白化处理。这样就可以避免透明区域显示为黑色的问题了。

Shader "Custom/Circle" { Properties { _Center("Center", Vector) = (0,0,0,0) _Radius("Radius", Range(0,1)) = 0.5 _Color("Color", Color) = (1,1,1,1) _MainTex("Texture", 2D) = "" } SubShader { Tags { "RenderType"="Opaque" } LOD 200 Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" struct appdata { float4 vertex : POSITION; float2 uv : TEXCOORD0; }; struct v2f { float4 vertex : SV_POSITION; float2 uv : TEXCOORD0; }; float4 _Center; float _Radius; float4 _Color; sampler2D _MainTex; v2f vert(appdata v) { v2f o; o.vertex = UnityObjectToClipPos(v.vertex); o.uv = v.uv; return o; } fixed4 frag(v2f i) : SV_TARGET0{ float2 uv = i.uv; float dist = distance(uv, _Center.xy); if(dist <= _Radius) { fixed4 texColor = tex2D(_MainTex, uv); return texColor * _Color; } else { discard; } } ENDCG } } FallBack "Diffuse" }

这是一个自定义的Shader代码示例,用于绘制一个圆形的渲染效果。该Shader在Unity中命名为"Custom/Circle"。 在这个Shader中,定义了几个属性用于控制圆形的位置、半径、颜色和纹理: 1. _Center:表示圆形的中心点位置,默认为(0,0,0,0)。 2. _Radius:表示圆形的半径,范围在0到1之间,默认为0.5。 3. _Color:表示圆形的颜色,默认为白色(1,1,1,1)。 4. _MainTex:表示圆形的纹理,为一个2D纹理,默认为空。 在SubShader中,使用了"RenderType"="Opaque"标签来指定渲染类型为不透明。LOD设置为200,表示使用中等级别的细节层次。 在Pass中,使用CGPROGRAM和ENDCG之间的代码块来定义顶点和片段着色器函数。 顶点着色器函数vert接收输入的顶点数据,并将顶点位置和纹理坐标传递给片段着色器函数frag。 片段着色器函数frag根据传入的纹理坐标计算与中心点的距离,并判断是否在半径范围内。如果在范围内,则从纹理中采样颜色,并与_Color属性相乘返回;否则,丢弃该像素。 最后,使用FallBack "Diffuse"指定了一个回退的渲染效果,即如果设备不支持该Shader,将使用Diffuse着色器作为回退方案。 这个Shader可以用于在物体表面绘制一个圆形区域,并根据纹理和颜色属性进行渲染。可以根据需要自定义属性值来实现不同的效果。

相关推荐

Shader "FancyScrollViewGallery/Metaball" { Properties { [PerRendererData] _MainTex ("Sprite Texture", 2D) = "white" {} _Color ("Tint", Color) = (1,1,1,1) _StencilComp ("Stencil Comparison", Float) = 8 _Stencil ("Stencil ID", Float) = 0 _StencilOp ("Stencil Operation", Float) = 0 _StencilWriteMask ("Stencil Write Mask", Float) = 255 _StencilReadMask ("Stencil Read Mask", Float) = 255 _ColorMask ("Color Mask", Float) = 15 [Toggle(UNITY_UI_ALPHACLIP)] _UseUIAlphaClip ("Use Alpha Clip", Float) = 0 } CGINCLUDE #include "UnityCG.cginc" #include "UnityUI.cginc" #include "../Common/Common.cginc" #include "Metaball.hlsl" #pragma multi_compile __ UNITY_UI_CLIP_RECT #pragma multi_compile __ UNITY_UI_ALPHACLIP struct appdata_t { float4 vertex : POSITION; float4 color : COLOR; float2 texcoord : TEXCOORD0; UNITY_VERTEX_INPUT_INSTANCE_ID }; struct v2f { float4 vertex : SV_POSITION; fixed4 color : COLOR; float2 uiCoord : TEXCOORD0; float4 worldPosition : TEXCOORD1; UNITY_VERTEX_OUTPUT_STEREO }; sampler2D _MainTex; fixed4 _Color; fixed4 _TextureSampleAdd; float4 _ClipRect; float4 _MainTex_ST; v2f vert(appdata_t v) { v2f OUT; UNITY_SETUP_INSTANCE_ID(v); UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(OUT); OUT.worldPosition = v.vertex; OUT.vertex = UnityObjectToClipPos(OUT.worldPosition); OUT.uiCoord = ui_coord(TRANSFORM_TEX(v.texcoord, _MainTex)); OUT.color = v.color * _Color; return OUT; } fixed4 frag(v2f i) : SV_Target { half4 color = metaball(i.uiCoord); color += _TextureSampleAdd; color *= i.color; #ifdef UNITY_UI_CLIP_RECT color.a *= UnityGet2DClipping(i.worldPosition.xy, _ClipRect); #endif #ifdef UNITY_UI_ALPHACLIP clip(color.a - 0.001); #endif return color; } ENDCG SubShader { Tags { "Queue"="Transparent" "IgnoreProjector"="True" "RenderType"="Transparent" "PreviewType"="Plane" "CanUseSpriteAtlas"="True" } Stencil { Ref [_Stencil] Comp [_StencilComp] Pass [_StencilOp] ReadMask [_StencilReadMask] WriteMask [_StencilWriteMask] } Cull Off Lighting Off ZWrite Off ZTest [unity_GUIZTestMode] Blend SrcAlpha OneMinusSrcAlpha ColorMask [_ColorMask] Pass { Name "Default" CGPROGRAM #pragma vertex vert #pragma fragment frag #pragma target 2.0 ENDCG } } }

最新推荐

recommend-type

systemverilog中struct和union的一种用法

SystemVerilog 中 struct 和 union 的应用 SystemVerilog 是一款功能强大的硬件描述语言,广泛应用于 FPGA 和 ASIC 设计中。其中,struct 和 union 是两种常用的数据结构,它们可以用来组织和存储数据。本文将介绍 ...
recommend-type

MapStruct实体间转换的简单用法

MapStruct实体间转换的简单用法 MapStruct是一个功能强大且广泛应用的对象转换工具,能够帮助开发者快速地将实体间的数据进行转换。下面是关于MapStruct实体间转换的简单用法的知识点: 一、为什么需要MapStruct?...
recommend-type

C语言结构体(struct)常见使用方法(细节问题)

C语言结构体(struct)常见使用方法(细节问题) C语言结构体(struct)是一种复杂数据类型,通过结构体,可以将多个变量封装到一个单元中,使得代码更加简洁和易于维护。以下是C语言结构体(struct)的常见使用...
recommend-type

Python使用struct处理二进制(pack和unpack用法)

有的时候需要用python处理二进制数据,比如,...pack(fmt, v1, v2, ...) # 按照给定的格式(fmt)解析字节流string,返回解析出来的tuple unpack(fmt, string) # 计算给定的格式(fmt)占用多少字节的内存 calcsize(fmt
recommend-type

基于stm32+FreeRTOS+ESP8266的实时天气系统

【作品名称】:基于stm32+FreeRTOS+ESP8266的实时天气系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:项目简介 基于stm32F407+FreeRTOS+ESP8266的实时气象站系统,通过物联网技术实时读取天气情况,温度以及自带了一个计时功能。 所需设备 stm32F407,淘晶驰串口屏,ESP8266; 串口屏连接串口3,ESP8266连接串口2,串口1用于打印状态。 实现过程 通过对ESP8266发送AT指令,从服务器读取天气的json数据,然后通过cJSON解码数据,最后FreeRTOS对任务进行管理(FreeRTOS和cJSON有冲突,需要将cJSON申请内存空间的函数替换成FreeRTOS申请内存的函数,每次解码后,一定要释放内存,否则解码会卡死,而且需要把Heap_size设置稍微大一点,推荐设置为4096)
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。