用python写一个图片风格迁移的代码
时间: 2024-02-03 12:15:34 浏览: 89
好的,这里给出一个使用PyTorch实现的图片风格迁移的代码。
首先需要安装必要的库:`torch`, `torchvision`, `numpy`, `PIL`
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import numpy as np
# 定义参数
style_img_path = 'style.jpg' # 风格图像路径
content_img_path = 'content.jpg' # 内容图像路径
output_img_path = 'output.jpg' # 输出图像路径
image_size = 512 # 图像大小
style_weight = 100000 # 风格权重
content_weight = 1 # 内容权重
num_epochs = 2000 # 迭代次数
# 加载图像并进行预处理
def load_image(image_path, transform=None, max_size=None, shape=None):
image = Image.open(image_path)
if max_size is not None:
scale = max_size / max(image.size)
size = np.array(image.size) * scale
size = tuple(map(int, size))
image = image.resize(size, Image.ANTIALIAS)
if shape is not None:
image = image.resize(shape, Image.LANCZOS)
if transform is not None:
image = transform(image).unsqueeze(0)
return image
# 将图像转换为张量,并进行归一化
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
style_img = load_image(style_img_path, transform, max_size=image_size)
content_img = load_image(content_img_path, transform, shape=[style_img.shape[2], style_img.shape[3]])
output_img = content_img.clone().requires_grad_(True)
# 加载预训练的VGG模型
vgg = models.vgg19(pretrained=True).features
# 将模型转移到GPU上(如果可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vgg.to(device)
style_img.to(device)
content_img.to(device)
output_img.to(device)
# 定义风格损失函数
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = self.gram_matrix(target_feature).detach()
def gram_matrix(self, input):
a, b, c, d = input.size()
features = input.view(a * b, c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d)
def forward(self, input):
G = self.gram_matrix(input)
self.loss = nn.functional.mse_loss(G, self.target)
return input
# 定义内容损失函数
class ContentLoss(nn.Module):
def __init__(self, target_feature):
super(ContentLoss, self).__init__()
self.target = target_feature.detach()
def forward(self, input):
self.loss = nn.functional.mse_loss(input, self.target)
return input
# 提取特征图函数
def get_features(image, model):
layers = {
'0': 'conv1_1',
'5': 'conv2_1',
'10': 'conv3_1',
'19': 'conv4_1',
'21': 'conv4_2',
'28': 'conv5_1'
}
features = {}
x = image
for name, layer in model._modules.items():
x = layer(x)
if name in layers:
features[layers[name]] = x
return features
# 优化器
optimizer = optim.Adam([output_img], lr=0.01)
# 迭代训练
for epoch in range(num_epochs):
output_features = get_features(output_img, vgg)
content_features = get_features(content_img, vgg)
style_features = get_features(style_img, vgg)
style_loss = 0
content_loss = 0
# 计算风格损失
for layer in style_features:
target_feature = style_features[layer]
target_gram = StyleLoss(target_feature)
output_feature = output_features[layer]
output_gram = StyleLoss(output_feature)
style_loss += target_gram.loss * style_weight
# 计算内容损失
for layer in content_features:
target_feature = content_features[layer]
output_feature = output_features[layer]
content_loss += ContentLoss(target_feature)(output_feature) * content_weight
# 总损失
total_loss = style_loss + content_loss
# 更新输出图像
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
# 输出日志
if (epoch + 1) % 100 == 0:
print('Epoch [{}/{}], Style Loss: {:.4f}, Content Loss: {:.4f}, Total Loss: {:.4f}'
.format(epoch + 1, num_epochs, style_loss.item(), content_loss.item(), total_loss.item()))
# 保存输出图像
output_img = output_img.cpu().detach().squeeze(0)
output_img = output_img.permute(1, 2, 0)
output_img = output_img * torch.tensor([0.229, 0.224, 0.225]) + torch.tensor([0.485, 0.456, 0.406])
output_img = output_img.numpy()
output_img = np.clip(output_img, 0, 1)
output_img = (output_img * 255).astype(np.uint8)
output_img = Image.fromarray(output_img)
output_img.save(output_img_path)
```
阅读全文