斐波那契数列是指这样的数列:数列的第一个和第二个都为1,接下来的每个数都等于前两个数之和。 也就是 f(n) = f(n-1) + f(n-2) 给出一 个正整数n,要求斐波那契数列中第n个数是多少。由于结果较大,仅需输出数列对1008610010取余的结果。 也就是 f(n) = (f(n-1) + f(n-2))%1008610010 数据规模 0 <= n <= 1000000
时间: 2023-12-15 21:03:13 浏览: 91
好的,我可以给你一个实现。这里我们使用循环来计算斐波那契数列的第n个数,并且在每次计算后取模,以避免结果过大。
代码如下:
```python
def fibonacci(n):
if n == 0:
return 0
elif n == 1 or n == 2:
return 1
else:
a, b = 1, 1
for i in range(n-2):
a, b = b, (a+b) % 1008610010
return b
```
你可以调用这个函数来计算斐波那契数列中第n个数对1008610010取余的结果。比如,如果你要计算第10个数,可以这样调用函数:
```python
result = fibonacci(10)
print(result)
```
输出结果为:
```
55
```
这个结果就是斐波那契数列中第10个数对1008610010取余的结果。
相关问题
斐波那契数列是指这样的数列: 数列的第一个和第二个数都为1,接下来每个数都等于前面2个数之和。给出一个正整数k,要求菲波那契数列中第k个数是多少。
您好!对于斐波那契数列,我们可以通过迭代或递归的方式来计算第k个数。
下面给出一个使用迭代的方法来计算第k个斐波那契数的示例代码:
```
def fibonacci(k):
if k <= 0:
return None
elif k == 1 or k == 2:
return 1
# 初始化前两个数
a, b = 1, 1
# 迭代计算第k个数
for _ in range(k - 2):
a, b = b, a + b
return b
# 示例使用
k = 10
result = fibonacci(k)
print("第", k, "个斐波那契数是:", result)
```
在上面的示例代码中,我们首先判断了k的值,如果k小于等于0,则返回None;如果k等于1或2,则返回1,因为斐波那契数列的第一个和第二个数都为1。然后我们使用迭代的方式计算第k个数,通过不断更新a和b的值,最终得到第k个斐波那契数。
希望能帮到您!如果有任何其他问题,请随时提问。
斐波那契数列是指这样的数列:数列的第一个和第二个数都为 1,接下来每个数都 为前面两个数的和。给出一个正整数 a,要求斐波那契数列中第 a 个数是多少。 (a<30)例如
斐波那契数列是一个经典的数学序列,其特点是每个数字都是前两个数字之和。如果给定一个正整数 \( a \),计算第 \( a \) 个斐波那契数,我们可以使用递归或者动态规划的方式。
对于 \( a \leq 1 \),斐波那契数分别为 1 和 1。当 \( a > 1 \) 时,第 \( a \) 个数等于第 \( a-1 \) 个数加上第 \( a-2 \) 个数。
递归版本的Python代码示例:
```python
def fibonacci_recursive(n):
if n <= 0:
return "输入错误"
elif n == 1 or n == 2:
return 1
else:
return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)
# 使用函数计算第 a 个斐波那契数
a = 6
fib_a = fibonacci_recursive(a)
```
然而,由于递归会有大量的重复计算,对于较大的 \( a \),这种方式效率不高。更好的选择是使用动态规划:
```python
def fibonacci_dynamic(n):
fib_sequence = [0, 1] + [0] * (n - 1)
for i in range(2, n+1):
fib_sequence[i] = fib_sequence[i-1] + fib_sequence[i-2]
return fib_sequence[n]
a = 6
fib_a = fibonacci_dynamic(a)
```
阅读全文