outputs_1 = tf.layers.conv1d(outputs_1, filters=num_units//2, kernel_size=1)
时间: 2024-05-27 17:11:09 浏览: 169
This line of code is using the `tf.layers.conv1d` function to apply a 1D convolution to the `outputs_1` tensor. The convolution is being applied with a filter size (or number of filters) of `num_units//2`, which is the integer division of `num_units` by 2. The kernel size is set to 1, which means that the convolution is only being applied over a single time step.
The purpose of this convolution is to reduce the number of channels or features in the tensor. This can help to reduce the complexity of the model and prevent overfitting. The output of this convolution will be a tensor with `num_units//2` channels.
相关问题
conv_1 = tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding='same', activation="relu", name="conv_1", kernel_initializer='glorot_uniform')(inputs) max_pooling_1 = tf.keras.layers.MaxPool2D((2, 2), (2, 2), padding="same")(conv_1) conv_2 = tf.keras.layers.Conv2D(64, (3, 3), padding='same', activation="relu", name="conv_2", kernel_initializer='glorot_uniform')(max_pooling_1) max_pooling_2 = tf.keras.layers.MaxPool2D((2, 2), (2, 2), padding="same")(conv_2) max_pooling_2_flat = tf.keras.layers.Flatten()(max_pooling_2) fc_1 = tf.keras.layers.Dense(200, activation="relu", kernel_initializer='he_normal')(max_pooling_2_flat) outputs = tf.keras.layers.Dense(10, activation=None)(fc_1)
这是一个使用 TensorFlow 实现的卷积神经网络模型,由两个卷积层和两个最大池化层构成,还包括一个 Flatten 层和两个全连接层。该模型总共有 10 个输出节点,没有指定特定的激活函数。这个模型可以用于图像分类任务。
def model(self): num_classes = self.config.get("CNN_training_rule", "num_classes") seq_length = self.config.get("CNN_training_rule", "seq_length") conv1_num_filters = self.config.get("CNN_training_rule", "conv1_num_filters") conv1_kernel_size = self.config.get("CNN_training_rule", "conv1_kernel_size") conv2_num_filters = self.config.get("CNN_training_rule", "conv2_num_filters") conv2_kernel_size = self.config.get("CNN_training_rule", "conv2_kernel_size") hidden_dim = self.config.get("CNN_training_rule", "hidden_dim") dropout_keep_prob = self.config.get("CNN_training_rule", "dropout_keep_prob") model_input = keras.layers.Input((seq_length,1), dtype='float64') # conv1形状[batch_size, seq_length, conv1_num_filters] conv_1 = keras.layers.Conv1D(conv1_num_filters, conv1_kernel_size, padding="SAME")(model_input) conv_2 = keras.layers.Conv1D(conv2_num_filters, conv2_kernel_size, padding="SAME")(conv_1) max_poolinged = keras.layers.GlobalMaxPool1D()(conv_2) full_connect = keras.layers.Dense(hidden_dim)(max_poolinged) droped = keras.layers.Dropout(dropout_keep_prob)(full_connect) relued = keras.layers.ReLU()(droped) model_output = keras.layers.Dense(num_classes, activation="softmax")(relued) model = keras.models.Model(inputs=model_input, outputs=model_output) # model.compile(loss="categorical_crossentropy", # optimizer="adam", # metrics=["accuracy"]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) return model给这段代码每行加上注释
```
def model(self):
# 获取配置文件中的参数
num_classes = self.config.get("CNN_training_rule", "num_classes") #分类数
seq_length = self.config.get("CNN_training_rule", "seq_length") #序列长度
conv1_num_filters = self.config.get("CNN_training_rule", "conv1_num_filters") #第一层卷积核数量
conv1_kernel_size = self.config.get("CNN_training_rule", "conv1_kernel_size") #第一层卷积核大小
conv2_num_filters = self.config.get("CNN_training_rule", "conv2_num_filters") #第二层卷积核数量
conv2_kernel_size = self.config.get("CNN_training_rule", "conv2_kernel_size") #第二层卷积核大小
hidden_dim = self.config.get("CNN_training_rule", "hidden_dim") #全连接层隐藏层大小
dropout_keep_prob = self.config.get("CNN_training_rule", "dropout_keep_prob") #dropout保留率
# 定义模型输入
model_input = keras.layers.Input((seq_length,1), dtype='float64')
# 第一层卷积
conv_1 = keras.layers.Conv1D(conv1_num_filters, conv1_kernel_size, padding="SAME")(model_input)
# 第二层卷积
conv_2 = keras.layers.Conv1D(conv2_num_filters, conv2_kernel_size, padding="SAME")(conv_1)
# 全局最大池化
max_poolinged = keras.layers.GlobalMaxPool1D()(conv_2)
# 全连接层
full_connect = keras.layers.Dense(hidden_dim)(max_poolinged)
# dropout层
droped = keras.layers.Dropout(dropout_keep_prob)(full_connect)
# relu激活层
relued = keras.layers.ReLU()(droped)
# 输出层
model_output = keras.layers.Dense(num_classes, activation="softmax")(relued)
# 定义模型
model = keras.models.Model(inputs=model_input, outputs=model_output)
# 编译模型
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 打印模型结构
print(model.summary())
return model
```
阅读全文