select * from book bk inner join recommend_category rc on bk.recommend_id = rc.recommend_id order by book_id desc limit 5;修改该语句,增加额外查询条件,查询的数据要为recommend_name=‘热销推荐’

时间: 2024-02-22 17:56:05 浏览: 50
可以在原来的语句基础上增加一个条件: ``` select * from book bk inner join recommend_category rc on bk.recommend_id = rc.recommend_id where rc.recommend_name = '热销推荐' order by book_id desc limit 5; ``` 这条语句在原来的基础上增加了一个条件,要求推荐分类表中的推荐名称(`recommend_name`)为“热销推荐”。这个条件使用 `where` 子句实现。最后再按照书籍 ID 降序排列,取前五个。
相关问题

select * from book bk inner on recommend_category rc where bk.recommend_id=rc.recommend_id order by desc limit 5

这是一条 SQL 查询语句,根据语法错误的情况来看,我猜测您想查询书籍表中的推荐书籍,并按推荐次数降序排列,取前五个。但是这条 SQL 语句存在语法错误,应该是: ``` select * from book bk inner join recommend_category rc on bk.recommend_id = rc.recommend_id order by recommend_count desc limit 5 ``` 这条语句使用了内连接(inner join)将书籍表和推荐分类表连接起来,条件是两个表的推荐 ID 相等。然后按照推荐次数降序排列,取前五个。

优化这个sql SELECT count( 1 ) FROM ( SELECT B.ID, B.PURCHASE_REQUEST_ID, B.MATERIAL_ID, B.MATERIAL_CODE, B.MATERIAL_NAME, B.STANDARD, B.MODEL_ID, B.BILL_ROW_ID, B.BILL_NO, BILL_NAME, B.MODEL_CODE, B.MODEL_NAME, B.PARENT_MODEL_ID, B.PARENT_MODEL_CODE, B.PARENT_MODEL_NAME, B.UNIT_CODE, B.UNIT_NAME, B.PURCHASE_TYPE_CODE, CAST( NVL( B.APPLY_NUM, 0 ) AS NUMBER ( 24, 10 ) ) AS APPLY_NUM, CAST( NVL( B.DEAL_NUM, 0 ) AS NUMBER ( 24, 10 ) ) AS DEAL_NUM, CAST( NVL( B.RETURN_NUM, 0 ) AS NUMBER ( 24, 10 ) ) AS RETURN_NUM, B.DEAL_USER_ID, B.DEAL_USER_NAME, CAST( NVL( B.PRICE, 0 ) AS NUMBER ( 24, 10 ) ) AS PRICE, CAST( NVL( B.AMOUNT, 0 ) AS NUMBER ( 24, 10 ) ) AMOUNT, B.IMPLEMENT_CODE, B.IMPLEMENT_NAME, B.IMPLEMENT_INVEST_AMOUNT, B.PURCHASE_MANAGER_ID, B.PURCHASE_MANAGER_NAME, B.PROVIDER_ID, B.PROVIDER_NAME, B.REMARK, B.DELIVER_AREA, B.DELIVER_ADDRESS, B.RECEIVE_PEOPLE, B.RECEIVE_PEOPLE_PHONE, B.ITEM_STATUS, B.COST_CENTER, B.COST_BUDGET_CODE, B.COST_IMPLEMENT_NAME, B.FRAME_CONT_ID, B.FRAME_CONT_CODE, B.FRAME_CONT_NAME, B.DETAIL_CONFIG, B.PURCHASE_CATEGORY_CODE, B.INVOICE_TITLE_CODE, B.INVOICE_SEND_ADDRRSS, B.MATERIAL_REQUEST_ITEM_ID, B.YEAR, B.DELETE_FLAG, B.PROVINCE_CODE, B.REASON, B.PARENT_ITEM_ID, B.FRAME_CONT_ITEM_ID, B.SUB_MATERIAL_REQUEST_ID, B.SUB_MATERIAL_REQUEST_CODE, B.MATERIAL_URL, B.RECOMMEND_PROVIDER_NAMES, C.PURCHASE_REQUEST_CODE, C.PURCHASE_REQUEST_NAME, C.APPLY_TYPE_CODE, C.CREATOR_NAME, C.APPLY_TELEPHONE, C.COMPANY_NAME, C.DEPT_NAME, B.CREATE_TIME, TO_CHAR( B.CREATE_TIME, 'YYYY-MM-DD' ) CREATE_TIME_STR, C.ARRIVE_TIME, C.IS_TO_END, C.MONEY_WAY_CODE, C.OWN, C.APPLY_CATEGORY_CODE, C.manu_Type, C.BILL_ID, MMD.MATERIAL_TYPE_CODE, B.BRANCH_COMPANY_DEAL_USER_ID, B.BRANCH_COMPANY_DEAL_USER_NAME, ( SELECT ORG_NAME FROM ORGANIZATIONS WHERE DELETE_FLAG = '0' AND ORG_CODE = ( SELECT PARENT_COMPANY_NO FROM ORGANIZATIONS WHERE ID = B.MATERIAL_DEPT_ID )) AS MATERIAL_COMPANY_NAME, B.ORIGINAL, B.PROVIDER_PRODUCT_MODEL, B.PROVIDER_PRODUCT_NAME, B.PRODUCT_DESC, B.Back_Flag, CASE WHEN MMD.material_type_code = 'WZ' THEN '1' WHEN MMD.material_type_code = 'FW' THEN '2' ELSE '3' END apply_category_code_item, NVL( C.IS_CARDSYSTEM_REQUEST, '0' ) IS_CARDSYSTEM_REQUEST, B.APPLY_GROUP_AUTHORITES, B.SCIENTIFIC_RESEARCH_ID, B.SCIENTIFIC_RESEARCH_CODE, B.SCIENTIFIC_RESEARCH_NAME, B.PREQUALFY_CODE, nvl( C.IS_QUICK, '0' ) AS IS_QUICK, C.PURCHASE_WAY_CODE, C.PURCHASE_TYPE_CODE PURCHASE_TYPE_CODE_P, C.ORIGINAL_TYPE, C.PURCHASE_REQUEST_BILLS_TYPE, B.IS_FRAME_CONT_MONAD FROM PURCHASE_REQUEST_ITEM B LEFT JOIN PURCHASE_REQUEST C ON B.PURCHASE_REQUEST_ID = C.ID LEFT JOIN MATERIAL_DATA MMD ON MMD.ID = B.MATERIAL_ID AND MMD.DELETE_FLAG = '0' WHERE B.delete_flag = '0' AND B.Item_Status IN ( 1 ) AND NOT EXISTS ( SELECT * FROM purchase_request_item_log pril WHERE B.id = pril.purchase_request_item_id AND pril.lock_status = '1' AND pril.delete_flag = '0' ) AND ( ( c.apply_type_code NOT IN ( '20', '41', '3' ) AND nvl( B.Apply_Num, 0 ) > nvl( B.Deal_Num, 0 )) OR c.apply_type_code IN ( '20', '41', '3' ) ) AND B.Deal_User_Id =: 1 AND C.MONEY_WAY_CODE =: 2 AND C.APPLY_TYPE_CODE =: 3 AND C.PAY_OUT_TYPE_CODE =: 4 AND C.APPLY_CATEGORY_CODE =: 5 AND NVL( C.IS_CARDSYSTEM_REQUEST, '0' ) = : 6 AND NOT EXISTS ( SELECT * FROM purchase_request_item p left join material_province mp ON p.material_id = mp.material_id WHERE p.delete_flag = 0 AND mp.delete_flag = 0 AND mp.material_status = 03 AND mp.org_code = p.province_code AND p.id = B.id ) ORDER BY C.ID, B.ID ASC)

首先,可以将子查询中的所有列名改为别名,这样可以避免重名和提高代码可读性。另外,可以尝试使用 EXISTS 子查询来替换 NOT EXISTS 子查询,因为 EXISTS 子查询的性能通常更好。最后,可以考虑对 WHERE 子句中的多个条件进行逻辑上的分组,以避免出现过于复杂的条件表达式。下面是优化后的 SQL: SELECT COUNT(1) FROM ( SELECT b.ID, b.PURCHASE_REQUEST_ID, b.MATERIAL_ID, b.MATERIAL_CODE, b.MATERIAL_NAME, b.STANDARD, b.MODEL_ID, b.BILL_ROW_ID, b.BILL_NO, b.BILL_NAME, b.MODEL_CODE, b.MODEL_NAME, b.PARENT_MODEL_ID, b.PARENT_MODEL_CODE, b.PARENT_MODEL_NAME, b.UNIT_CODE, b.UNIT_NAME, b.PURCHASE_TYPE_CODE, CAST(NVL(b.APPLY_NUM, 0) AS NUMBER(24, 10)) AS APPLY_NUM, CAST(NVL(b.DEAL_NUM, 0) AS NUMBER(24, 10)) AS DEAL_NUM, CAST(NVL(b.RETURN_NUM, 0) AS NUMBER(24, 10)) AS RETURN_NUM, b.DEAL_USER_ID, b.DEAL_USER_NAME, CAST(NVL(b.PRICE, 0) AS NUMBER(24, 10)) AS PRICE, CAST(NVL(b.AMOUNT, 0) AS NUMBER(24, 10)) AMOUNT, b.IMPLEMENT_CODE, b.IMPLEMENT_NAME, b.IMPLEMENT_INVEST_AMOUNT, b.PURCHASE_MANAGER_ID, b.PURCHASE_MANAGER_NAME, b.PROVIDER_ID, b.PROVIDER_NAME, b.REMARK, b.DELIVER_AREA, b.DELIVER_ADDRESS, b.RECEIVE_PEOPLE, b.RECEIVE_PEOPLE_PHONE, b.ITEM_STATUS, b.COST_CENTER, b.COST_BUDGET_CODE, b.COST_IMPLEMENT_NAME, b.FRAME_CONT_ID, b.FRAME_CONT_CODE, b.FRAME_CONT_NAME, b.DETAIL_CONFIG, b.PURCHASE_CATEGORY_CODE, b.INVOICE_TITLE_CODE, b.INVOICE_SEND_ADDRRSS, b.MATERIAL_REQUEST_ITEM_ID, b.YEAR, b.DELETE_FLAG, b.PROVINCE_CODE, b.REASON, b.PARENT_ITEM_ID, b.FRAME_CONT_ITEM_ID, b.SUB_MATERIAL_REQUEST_ID, b.SUB_MATERIAL_REQUEST_CODE, b.MATERIAL_URL, b.RECOMMEND_PROVIDER_NAMES, c.PURCHASE_REQUEST_CODE, c.PURCHASE_REQUEST_NAME, c.APPLY_TYPE_CODE, c.CREATOR_NAME, c.APPLY_TELEPHONE, c.COMPANY_NAME, c.DEPT_NAME, b.CREATE_TIME, TO_CHAR(b.CREATE_TIME, 'YYYY-MM-DD') CREATE_TIME_STR, c.ARRIVE_TIME, c.IS_TO_END, c.MONEY_WAY_CODE, c.OWN, c.APPLY_CATEGORY_CODE, c.manu_Type, c.BILL_ID, MMD.MATERIAL_TYPE_CODE, b.BRANCH_COMPANY_DEAL_USER_ID, b.BRANCH_COMPANY_DEAL_USER_NAME, (SELECT ORG_NAME FROM ORGANIZATIONS WHERE DELETE_FLAG = '0' AND ORG_CODE = (SELECT PARENT_COMPANY_NO FROM ORGANIZATIONS WHERE ID = b.MATERIAL_DEPT_ID)) AS MATERIAL_COMPANY_NAME, b.ORIGINAL, b.PROVIDER_PRODUCT_MODEL, b.PROVIDER_PRODUCT_NAME, b.PRODUCT_DESC, b.Back_Flag, CASE WHEN MMD.material_type_code = 'WZ' THEN '1' WHEN MMD.material_type_code = 'FW' THEN '2' ELSE '3' END apply_category_code_item, NVL(c.IS_CARDSYSTEM_REQUEST, '0') IS_CARDSYSTEM_REQUEST, b.APPLY_GROUP_AUTHORITES, b.SCIENTIFIC_RESEARCH_ID, b.SCIENTIFIC_RESEARCH_CODE, b.SCIENTIFIC_RESEARCH_NAME, b.PREQUALFY_CODE, NVL(c.IS_QUICK, '0') AS IS_QUICK, c.PURCHASE_WAY_CODE, c.PURCHASE_TYPE_CODE PURCHASE_TYPE_CODE_P, c.ORIGINAL_TYPE, c.PURCHASE_REQUEST_BILLS_TYPE, b.IS_FRAME_CONT_MONAD FROM PURCHASE_REQUEST_ITEM b LEFT JOIN PURCHASE_REQUEST c ON b.PURCHASE_REQUEST_ID = c.ID LEFT JOIN MATERIAL_DATA MMD ON MMD.ID = b.MATERIAL_ID AND MMD.DELETE_FLAG = '0' WHERE b.delete_flag = '0' AND b.Item_Status IN (1) AND b.Deal_User_Id = :1 AND C.MONEY_WAY_CODE = :2 AND C.APPLY_TYPE_CODE = :3 AND C.PAY_OUT_TYPE_CODE = :4 AND C.APPLY_CATEGORY_CODE = :5 AND NVL(C.IS_CARDSYSTEM_REQUEST, '0') = :6 AND EXISTS ( SELECT * FROM purchase_request_item_log pril WHERE B.id = pril.purchase_request_item_id AND pril.lock_status = '1' AND pril.delete_flag = '0' ) AND ( c.apply_type_code IN ('20', '41', '3') OR ( c.apply_type_code NOT IN ('20', '41', '3') AND NVL(b.Apply_Num, 0) > NVL(b.Deal_Num, 0) ) ) AND NOT EXISTS ( SELECT * FROM purchase_request_item p LEFT JOIN material_province mp ON p.material_id = mp.material_id WHERE p.delete_flag = 0 AND mp.delete_flag = 0 AND mp.material_status = 03 AND mp.org_code = p.province_code AND p.id = b.id ) ORDER BY c.ID, b.ID ASC )
阅读全文

相关推荐

select a.*, b.name activityName, c.name productName, c.member_max memberMax, d.status as complete, group_concat(if(e.face_value is null, "", e.face_value) separator "\n") as rewardAmount, group_concat(if(e.coupon_code is null, "", e.coupon_code ) separator "\n") as couponCode , group_concat(if(e.coupon_id is null, "", e.coupon_id) separator "\n") as caId from marketing_group_tool_group_member a left join marketing_group_tool_group_info d on a.group_id = d.id left join marketing_group_tool_activity b on a.activity_id = b.activity_id left join marketing_group_tool_product_base c on a.product_id = c.product_id left join marketing_group_tool_send_coupon_record e on (a.group_id = e.group_id and a.card_no = e.card_no) left join wx_recommend_organization organization on b.organization_id = organization.id where ((organization.tree_id between 2002000000000000 and 2002999999999999) or (organization.tree_id between 1000000000000000 and 1999999999999999) or (organization.tree_id between 2000000000000000 and 2999999999999999) or (organization.tree_id between 3000000000000000 and 3999999999999999) or (organization.tree_id between 4000000000000000 and 4999999999999999) or (organization.tree_id between 6000000000000000 and 6999999999999999) or (organization.tree_id between 5000000000000000 and 5999999999999999) or (organization.tree_id between 10000000000000000 and 10999999999999999) or (organization.tree_id between 8000000000000000 and 8999999999999999) or (organization.tree_id between 9000000000000000 and 9999999999999999) or (organization.tree_id between 11000000000000000 and 11999999999999999) or (organization.tree_id between 12000000000000000 and 12999999999999999) or (organization.tree_id between 13000000000000000 and 13999999999999999) or (organization.tree_id between 14000000000000000 and 14999999999999999) or (organization.tree_id between 15000000000000000 and 15999999999999999) or (organization.tree_id between 16000000000000000 and 16999999999999999) or (organization.tree_id between 17000000000000000 and 17999999999999999) ) and 1 = 1 group by a.id, a.activity_id , a.group_id , a.product_id , a.activity_referral_code, a.product_referral_code , a.openid , a.unionid , a.nickname , a.head_img , a.mobile , a.is_sub_buy , a.is_sub_progress , a.is_sub_success , a.sort , a.card_no , a.create_time , a.is_received_notice , a.is_received_progress , a.is_received_success , b.name, c.name, c.member_max , d.status order by a.id desc limit 0,20;

print("开始执行推荐算法....") #spark.sql(etl_sql).write.jdbc(mysql_url, 'task888', 'overwrite', prop) # 获取:用户ID、房源ID、评分 etl_rdd = spark.sql(etl_sql).select('user_id', 'phone_id', 'action_core').rdd rdd = etl_rdd.map(lambda x: Row(user_id=x[0], book_id=x[1], action_core=x[2])).map(lambda x: (x[2], x[1], x[0])) # 5.训练模型 model = ALS.train(rdd, 10, 10, 0.01) # 7.调用模型 products_for_users_list = model.recommendProductsForUsers(10).collect() # 8.打开文件,将推荐的结果保存到data目录下 out = open(r'data_etl/recommend_info.csv', 'w', newline='', encoding='utf-8') # 9.设置写入模式 csv_write = csv.writer(out, dialect='excel') # 10.设置用户csv文件头行 user_head = ['user_id', 'phone_id', 'score'] # 12.写入头行 csv_write.writerow(user_head) # 13.循环推荐数据 for i in products_for_users_list: for value in i[1]: rating = [value[0], value[1], value[2]] # 写入数据 csv_write.writerow(rating) print("推荐算法执行结束,开始加工和变换推荐结果....") # 14.读取推荐的结果 recommend_df = spark \ .read \ .format('com.databricks.spark.csv') \ .options(header='true', inferschema='true', ending='utf-8') \ .load("data_etl/recommend_info.csv") # 注册临时表 recommend_df.createOrReplaceTempView("recommend") # 构造 spark执行的sql recommend_sql = ''' SELECT a.user_id, a.phone_id, bid,phone_name, phone_brand, phone_price, phone_memory ,phone_screen_size,ROUND(score,1) score FROM recommend a,phone b WHERE a.phone_id=b.phone_id ''' # 执行spark sql语句,得到dataframe recommend_df = spark.sql(recommend_sql) # 将推荐的结果写入mysql recommend_df.write.jdbc(mysql_url, 'recommend', 'overwrite', prop) 解释一下这段代码

import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import SVDRecommender triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) K=50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] recommender = SVDRecommender(K) U, S, Vt = recommender.fit(urm) Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = recommender.recommend(uTest, urm, 10) Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)这段代码报错了,为什么?给出修改后的 代码

将上述代码放入了Recommenders.py文件中,作为一个自定义工具包。将下列代码中调用scipy包中svd的部分。转为使用Recommenders.py工具包中封装的svd方法。给出修改后的完整代码。import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import * from scipy.sparse.linalg import svds from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix # Load and preprocess data triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd # load dataset triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged['total_listen_count'] # Convert data to sparse matrix format small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) # Compute SVD def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i,i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S*Vt max_recommendation = 10 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID,max_recommendation ), dtype=np.float16) for userTest in uTest: prod = U[userTest, :]*rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K=50 # number of factors urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) # Compute recommendations for test users # Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt, uTest, K, True) # Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)

最新推荐

recommend-type

jeecms_v2012标签使用,模版配置

- **Recommend**:推荐标志,用于标记是否为推荐内容。 - **excluded**:排除某些特定条件的内容。 - **orderby**:排序方式,如按时间、热度等排序。 以上是Jeecms_v2012模板标签的详细解析,理解并熟练运用这些...
recommend-type

图像去雾基于基于Matlab界面的(多方法对比,PSNR,信息熵,GUI界面).rar

MATLAB设计
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【热传递模型的终极指南】:掌握分类、仿真设计、优化与故障诊断的18大秘诀

![热传递模型](https://study.com/cimages/videopreview/radiation-heat-transfer-the-stefan-boltzmann-law_135679.png) # 摘要 热传递模型在工程和物理学中占有重要地位,对于提高热交换效率和散热设计至关重要。本文系统性地介绍了热传递模型的基础知识、分类以及在实际中的应用案例。文章详细阐述了导热、对流换热以及辐射传热的基本原理,并对不同类型的热传递模型进行了分类,包括稳态与非稳态模型、一维到三维模型和线性与非线性模型。通过仿真设计章节,文章展示了如何选择合适的仿真软件、构建几何模型、设置材料属性和
recommend-type

python经典题型和解题代码

Python的经典题型通常涵盖了基础语法、数据结构、算法、函数式编程、文件操作、异常处理以及网络爬虫等内容。以下是一些常见的题目及其简单示例: 1. **基础题**: - 示例:打印九九乘法表 ```python for i in range(1, 10): print(f"{i} * {i} = {i*i}") ``` 2. **数据结构**: - 示例:实现队列(使用列表) ```python class Queue: def __init__(self):