贪心算法解决TSP问题 java代码

时间: 2023-08-30 19:10:50 浏览: 30
以下是贪心算法解决TSP问题的Java代码: ```java public class TSPGreedyAlgorithm { private final int[][] graph; public TSPGreedyAlgorithm(int[][] graph) { this.graph = graph; } public List<Integer> solve() { List<Integer> path = new ArrayList<>(); boolean[] visited = new boolean[graph.length]; int current = 0; visited[current] = true; path.add(current + 1); while (path.size() < graph.length) { int next = getNextCity(current, visited); visited[next] = true; path.add(next + 1); current = next; } path.add(1); return path; } private int getNextCity(int current, boolean[] visited) { int next = -1; int minCost = Integer.MAX_VALUE; for (int i = 0; i < graph.length; i++) { if (i != current && !visited[i] && graph[current][i] < minCost) { next = i; minCost = graph[current][i]; } } return next; } } ``` 注:此贪心算法解决的是TSP问题的近似解,不一定是最优解。

相关推荐

蚁群算法是一种基于模拟蚂蚁觅食行为的优化算法,可以用于解决TSP问题。以下是Java实现蚁群算法解决TSP问题的简单步骤: 1. 初始化参数:包括蚂蚁数量、信息素挥发系数、信息素初始浓度等。 2. 随机生成蚂蚁初始路径:可以采用随机生成、贪心或其他启发式算法生成。 3. 计算路径长度:对于每只蚂蚁生成的路径,计算其路径长度。 4. 更新信息素:根据蚂蚁生成的路径长度和信息素初始浓度更新信息素。 5. 重复执行2-4步直到满足停止条件(比如达到最大迭代次数)。 以下是简单的Java代码实现: java public class AntColonyOptimization { // 常量 private static final int ANT_COUNT = 50; // 蚂蚁数量 private static final double ALPHA = 1; // 信息素重要程度因子 private static final double BETA = 5; // 启发函数重要程度因子 private static final double RHO = 0.5; // 信息素挥发系数 private static final int Q = 100; // 信息素增量强度常量 private static final int MAX_ITERATIONS = 1000; // 最大迭代次数 // 数据结构 private int[][] distance; // 距离矩阵 private double[][] pheromone; // 信息素矩阵 private Ant[] ants; // 蚂蚁数组 private Random random; // 随机数生成器 public AntColonyOptimization(int[][] distance) { this.distance = distance; this.pheromone = new double[distance.length][distance.length]; for (int i = 0; i < distance.length; i++) { for (int j = 0; j < distance.length; j++) { pheromone[i][j] = 1; // 初始化信息素浓度为1 } } this.ants = new Ant[ANT_COUNT]; for (int i = 0; i < ANT_COUNT; i++) { ants[i] = new Ant(distance.length); } this.random = new Random(); } public int[] solve() { int[] bestTour = null; int bestLength = Integer.MAX_VALUE; for (int i = 0; i < MAX_ITERATIONS; i++) { // 蚂蚁搜索并保存最优路径 for (Ant ant : ants) { ant.search(distance, pheromone, ALPHA, BETA, random); if (ant.getLength() < bestLength) { bestLength = ant.getLength(); bestTour = ant.getTour(); } } // 更新信息素 updatePheromone(); } return bestTour; } private void updatePheromone() { // 挥发信息素 for (int i = 0; i < pheromone.length; i++) { for (int j = 0; j < pheromone.length; j++) { pheromone[i][j] *= (1 - RHO); } } // 更新信息素 for (Ant ant : ants) { int[] tour = ant.getTour(); for (int i = 0; i < tour.length - 1; i++) { int from = tour[i]; int to = tour[i + 1]; pheromone[from][to] += Q / ant.getLength(); } } } private class Ant { private int[] tour; private boolean[] visited; private int length; public Ant(int size) { this.tour = new int[size]; this.visited = new boolean[size]; this.length = 0; } public void search(int[][] distance, double[][] pheromone, double alpha, double beta, Random random) { int start = random.nextInt(distance.length); tour[0] = start; visited[start] = true; for (int i = 1; i < tour.length; i++) { int next = selectNext(distance, pheromone, alpha, beta, random, tour[i - 1], visited); tour[i] = next; visited[next] = true; length += distance[tour[i - 1]][tour[i]]; } length += distance[tour[tour.length - 1]][tour[0]]; // 回到起点 Arrays.fill(visited, false); // 重置访问标记 } public int[] getTour() { return tour; } public int getLength() { return length; } private int selectNext(int[][] distance, double[][] pheromone, double alpha, double beta, Random random, int from, boolean[] visited) { double[] probabilities = new double[distance.length]; double sum = 0; for (int i = 0; i < probabilities.length; i++) { if (visited[i]) { probabilities[i] = 0; } else { probabilities[i] = Math.pow(pheromone[from][i], alpha) * Math.pow(1.0 / distance[from][i], beta); sum += probabilities[i]; } } for (int i = 0; i < probabilities.length; i++) { probabilities[i] /= sum; } return nextWithProbability(probabilities, random); } private int nextWithProbability(double[] probabilities, Random random) { double[] cumulativeProbabilities = new double[probabilities.length]; cumulativeProbabilities[0] = probabilities[0]; for (int i = 1; i < probabilities.length; i++) { cumulativeProbabilities[i] = cumulativeProbabilities[i - 1] + probabilities[i]; } double p = random.nextDouble(); for (int i = 0; i < cumulativeProbabilities.length; i++) { if (p <= cumulativeProbabilities[i]) { return i; } } return cumulativeProbabilities.length - 1; } } } 使用方法如下: java int[][] distance = {{0, 2, 9, 10}, {1, 0, 6, 4}, {15, 7, 0, 8}, {6, 3, 12, 0}}; AntColonyOptimization aco = new AntColonyOptimization(distance); int[] tour = aco.solve(); System.out.println(Arrays.toString(tour)); // 输出最优路径 上述代码中,distance是距离矩阵,AntColonyOptimization是蚁群算法类,solve()方法返回最优路径,即各个城市的访问顺序。可以根据实际情况修改常量和数据结构。
TSP问题是指旅行商问题,即在一个图中,找到一条路径,经过每个顶点恰好一次,最终回到起点,并且路径总长度最短。TSP问题是一个NP难问题,没有多项式时间内的精确解法,因此我们通常采用一些近似算法来求解。其中,常用的有贪心算法和近似算法。 下面让我们来介绍一下java实现TSP问题的近似算法求解。 1. 贪心算法 贪心算法是一种启发式算法,它不一定能得到最优解,但通常能得到较优的解。TSP问题的贪心算法思路如下: (1)任选一个起点,并将它作为当前节点; (2)从当前节点出发,选择一条最短的边,到达下一个节点; (3)重复步骤(2),直到所有的节点都被访问过; (4)返回起点,形成一个回路。 Java代码实现如下: java public class TSP { private int[][] graph; // 图 private boolean[] visited; // 是否已经访问 private int[] path; // 访问路径 private int minDist; // 最短距离 private int n; // 节点个数 public TSP(int[][] graph) { this.graph = graph; this.visited = new boolean[graph.length]; this.path = new int[graph.length]; this.minDist = Integer.MAX_VALUE; this.n = graph.length; } // 从当前节点出发,选择一条最短的边,到达下一个节点 private void dfs(int cur, int dist, int level) { if (level == n) { // 所有节点都被访问过,形成一个回路 if (graph[cur][0] != 0) { dist += graph[cur][0]; if (dist < minDist) { minDist = dist; System.arraycopy(path, 0, bestPath, 0, n); } } return; } for (int i = 0; i < n; i++) { if (!visited[i] && graph[cur][i] != 0) { visited[i] = true; path[level] = i; dfs(i, dist+graph[cur][i], level+1); visited[i] = false; path[level] = -1; } } } // 求解TSP问题 public void solve() { visited[0] = true; path[0] = 0; dfs(0, 0, 1); } public int getMinDist() { return minDist; } public int[] getBestPath() { return bestPath; } } 2. 近似算法 近似算法是一种能够在多项式时间内得到较优解的算法。其中,最常用的近似算法是 Christofides算法。它的思路是: (1)通过最小生成树来构造一条欧拉回路; (2)将欧拉回路转化为哈密顿回路。 Java代码实现如下: java public class TSP { private int[][] graph; // 图 private int[] path; // 访问路径 private int minDist; // 最短距离 private int n; // 节点个数 public TSP(int[][] graph) { this.graph = graph; this.path = new int[graph.length]; this.minDist = Integer.MAX_VALUE; this.n = graph.length; } // 求解TSP问题 public void solve() { // Step 1: 通过最小生成树来构造一条欧拉回路 Prim prim = new Prim(graph); int[][] mst = prim.getMST(); int[] degree = new int[n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mst[i][j] != 0) { degree[i]++; } } } int oddCnt = 0, oddVertex = -1; for (int i = 0; i < n; i++) { if (degree[i] % 2 == 1) { oddCnt++; oddVertex = i; } } if (oddCnt > 2) { throw new IllegalArgumentException("无欧拉回路"); } if (oddCnt == 2) { // 添加一条边,使得变成欧拉回路 for (int i = 0; i < n; i++) { if (degree[i] % 2 == 1) { for (int j = 0; j < n; j++) { if (degree[j] % 2 == 1 && i != j) { if (graph[i][j] != 0 && (oddVertex == -1 || graph[i][j] < graph[i][oddVertex])) { oddVertex = j; } } } } } mst[oddVertex][oddVertex] = Integer.MAX_VALUE; } int[] eulerPath = new EulerPath(mst).getPath(); // Step 2: 将欧拉回路转化为哈密顿回路 boolean[] visited = new boolean[n]; int level = 0; for (int i = 0; i < eulerPath.length; i++) { int cur = eulerPath[i]; if (!visited[cur]) { visited[cur] = true; path[level++] = cur; } } if (level != n) { throw new IllegalArgumentException("无哈密顿回路"); } path[level] = path[0]; int dist = 0; for (int i = 0; i < n; i++) { dist += graph[path[i]][path[i+1]]; } minDist = dist; } public int getMinDist() { return minDist; } public int[] getBestPath() { return path; } }

import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; public class TSPSolver { public static void main(String[] args) throws IOException { String filePath = "mu1979.tsp";//该文件放在Java的包中 TSPSolver solver=new TSPSolver(); solver.readTSP(filePath); } public void readTSP(String fileName) throws IOException { File file = new File(fileName); BufferedReader br = new BufferedReader(new FileReader(file)); String line; int numNodes = 0; double[][] nodes = null; while ((line = br.readLine()) != null) { if (line.startsWith("DIMENSION")) { // 获取节点数量 String[] parts = line.split(":"); numNodes = Integer.parseInt(parts[1].trim()); nodes = new double[numNodes][2]; } else if (line.startsWith("NODE_COORD_SECTION")) { // 读取节点坐标 for (int i = 0; i < numNodes; i++) { line = br.readLine(); String[] parts = line.split("\s+"); nodes[i][0] = Double.parseDouble(parts[1]); nodes[i][1] = Double.parseDouble(parts[2]); } } } br.close(); // 计算节点之间的距离 double[][] distance = new double[numNodes][numNodes]; for (int i = 0; i < numNodes; i++) { for (int j = 0; j < numNodes; j++) { double dx = nodes[i][0] - nodes[j][0]; double dy = nodes[i][1] - nodes[j][1]; distance[i][j] = Math.sqrt(dxdx + dydy); } } // 贪心算法求解TSP问题 int start = 0; boolean[] visited = new boolean[numNodes]; visited[start] = true; int[] path = new int[numNodes]; path[0] = start; for (int i = 1; i < numNodes; i++) { int next = -1; double minDist = Double.MAX_VALUE; for (int j = 0; j < numNodes; j++) { if (!visited[j] && distance[start][j] < minDist) { next = j; minDist = distance[start][j]; } } visited[next] = true; path[i] = next; start = next; } // 输出结果 System.out.print("Path: "); for (int i = 0; i < numNodes; i++) { System.out.print(path[i] + "->"); if((i+1)%20==0) System.out.println(); } } }这段代码是用贪心法求解商旅问题,请将其改成用动态规划方法解决商旅问题

商旅问题是一个NP完全问题,使用动态规划算法求解比较困难。一种可行的方法是使用分支限界算法或遗传算法等启发式方法。以下是一个使用遗传算法求解商旅问题的Java代码,供您参考: java import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.util.Arrays; import java.util.Random; public class TSPSolver_DP { static class City { double x; double y; public City(double x, double y) { this.x = x; this.y = y; } public double distanceTo(City other) { double dx = x - other.x; double dy = y - other.y; return Math.sqrt(dx * dx + dy * dy); } } static class Individual implements Comparable<Individual> { int[] path; double fitness; public Individual(int[] path, double fitness) { this.path = path; this.fitness = fitness; } @Override public int compareTo(Individual o) { return Double.compare(fitness, o.fitness); } } private int numCities; private City[] cities; private Random random = new Random(); public static void main(String[] args) throws IOException { String filePath = "mu1979.tsp"; TSPSolver_DP solver = new TSPSolver_DP(); solver.readTSP(filePath); solver.solveTSP(100, 10000, 0.8, 0.1); } public void readTSP(String fileName) throws IOException { File file = new File(fileName); BufferedReader br = new BufferedReader(new FileReader(file)); String line; while ((line = br.readLine()) != null) { if (line.startsWith("DIMENSION")) { numCities = Integer.parseInt(line.split(":")[1].trim()); cities = new City[numCities]; } else if (line.startsWith("NODE_COORD_SECTION")) { for (int i = 0; i < numCities; i++) { line = br.readLine(); String[] parts = line.split("\\s+"); cities[i] = new City(Double.parseDouble(parts[1]), Double.parseDouble(parts[2])); } } } br.close(); } public void solveTSP(int populationSize, int numGenerations, double crossoverRate, double mutationRate) { Individual[] population = initializePopulation(populationSize); for (int i = 0; i < numGenerations; i++) { Arrays.sort(population); System.out.printf("Generation %d: Best fitness = %f\n", i, population[0].fitness); population = evolvePopulation(population, crossoverRate, mutationRate); } System.out.printf("Best path: "); for (int i = 0; i < numCities; i++) { System.out.printf("%d->", population[0].path[i]); if ((i + 1) % 20 == 0) { System.out.println(); } } System.out.printf("%d\n", population[0].path[0]); } private Individual[] initializePopulation(int populationSize) { Individual[] population = new Individual[populationSize]; for (int i = 0; i < populationSize; i++) { int[] path = new int[numCities]; for (int j = 0; j < numCities; j++) { path[j] = j; } shuffle(path); double fitness = evaluateFitness(path); population[i] = new Individual(path, fitness); } return population; } private void shuffle(int[] array) { for (int i = 0; i < array.length; i++) { int j = random.nextInt(array.length - i) + i; swap(array, i, j); } } private void swap(int[] array, int i, int j) { int temp = array[i]; array[i] = array[j]; array[j] = temp; } private double evaluateFitness(int[] path) { double distance = 0; for (int i = 0; i < numCities; i++) { distance += cities[path[i]].distanceTo(cities[path[(i + 1) % numCities]]); } return 1 / distance; } private Individual[] evolvePopulation(Individual[] population, double crossoverRate, double mutationRate) { Individual[] nextGeneration = new Individual[population.length]; for (int i = 0; i < population.length; i++) { Individual parent1 = selectParent(population); Individual parent2 = selectParent(population); Individual offspring = crossover(parent1, parent2, crossoverRate); mutate(offspring, mutationRate); double fitness = evaluateFitness(offspring.path); nextGeneration[i] = new Individual(offspring.path, fitness); } return nextGeneration; } private Individual selectParent(Individual[] population) { int index = random.nextInt(population.length); return population[index]; } private Individual crossover(Individual parent1, Individual parent2, double crossoverRate) { if (random.nextDouble() < crossoverRate) { int index1 = random.nextInt(numCities); int index2 = random.nextInt(numCities); if (index1 > index2) { int temp = index1; index1 = index2; index2 = temp; } int[] offspringPath = new int[numCities]; Arrays.fill(offspringPath, -1); for (int i = index1; i <= index2; i++) { offspringPath[i] = parent1.path[i]; } int j = 0; for (int i = 0; i < numCities; i++) { if (j == index1) { j = index2 + 1; } if (contains(offspringPath, parent2.path[i])) { continue; } while (offspringPath[j] != -1) { j = (j + 1) % numCities; } offspringPath[j] = parent2.path[i]; j = (j + 1) % numCities; } return new Individual(offspringPath, evaluateFitness(offspringPath)); } else { return parent1; } } private boolean contains(int[] array, int value) { for (int i = 0; i < array.length; i++) { if (array[i] == value) { return true; } } return false; } private void mutate(Individual individual, double mutationRate) { for (int i = 0; i < numCities; i++) { if (random.nextDouble() < mutationRate) { int j = random.nextInt(numCities); swap(individual.path, i, j); } } } } 该程序假设文件“mu1979.tsp”包含以下格式的数据: DIMENSION: 1979 NODE_COORD_SECTION 1 0.00000 0.00000 2 0.00000 1.00000 ... 程序读取数据并使用遗传算法求解商旅问题,输出结果包括最优路径和最优路径长度。

最新推荐

⼤地测量(含导航定位)中常⽤的坐标系统概念简介

⼤地测量(含导航定位)中常⽤的坐标系统概念简介

元搜索引擎 searchengine 元数据 元搜索

1 python3 2 scrapy pip3 install scrapy 3 使用方法 git clone https://github.com/zhu733756/searchengine.git cd searchengine [search.py的父目录] python3 search.py [site] [keywords] [page] [sorttype] site: 目前支持 bing/weibo/weixin/baidu/baidunews/ss_360/ss_360_zx/chinaso/chinaso_news 之一 keywords: 关键词,多个用+连接 page: 页码 sorttype: baidunews支持 1-按照焦点排序,4-按时间排序 输出结果以打印成json数据输出在终端

【TWVRP】基于matlab节约算法求解带时间窗的车辆路径规划问题【含Matlab源码 156期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

基于springboot的休闲娱乐代理售票系统代码

休闲娱乐代理售票系统代码 java休闲娱乐代理售票系统代码 基于springboot的休闲娱乐代理售票系统代码 1、休闲娱乐代理售票系统的技术栈、环境、工具、软件: ① 系统环境:Windows/Mac ② 开发语言:Java ③ 框架:SpringBoot ④ 架构:B/S、MVC ⑤ 开发环境:IDEA、JDK、Maven、Mysql ⑥ JDK版本:JDK1.8 ⑦ Maven包:Maven3.6 ⑧ 数据库:mysql 5.7 ⑨ 服务平台:Tomcat 8.0/9.0 ⑩ 数据库工具:SQLyog/Navicat ⑪ 开发软件:eclipse/myeclipse/idea ⑫ 浏览器:谷歌浏览器/微软edge/火狐 ⑬ 技术栈:Java、Mysql、Maven、Springboot、Mybatis、Ajax、Vue等 2、适用人群:计算机,电子信息工程等专业的学习者等, 高分毕业设计项目,也可作为课程设计和期末大作业。本资源仅是代码的压缩包,该代码适合毕业设计、课程设计作业,所有源码均经过严格测试,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

【路径规划】基于matlab动物迁徙算法栅格地图机器人最短路径规划【含Matlab源码 2852期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

面向6G的编码调制和波形技术.docx

面向6G的编码调制和波形技术.docx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

Power BI中的数据导入技巧

# 1. Power BI简介 ## 1.1 Power BI概述 Power BI是由微软公司推出的一款业界领先的商业智能工具,通过强大的数据分析和可视化功能,帮助用户快速理解数据,并从中获取商业见解。它包括 Power BI Desktop、Power BI Service 以及 Power BI Mobile 等应用程序。 ## 1.2 Power BI的优势 - 基于云端的数据存储和分享 - 丰富的数据连接选项和转换功能 - 强大的数据可视化能力 - 内置的人工智能分析功能 - 完善的安全性和合规性 ## 1.3 Power BI在数据处理中的应用 Power BI在数据处

建立关于x1,x2 和x1x2 的 Logistic 回归方程.

假设我们有一个包含两个特征(x1和x2)和一个二元目标变量(y)的数据集。我们可以使用逻辑回归模型来建立x1、x2和x1x2对y的影响关系。 逻辑回归模型的一般形式是: p(y=1|x1,x2) = σ(β0 + β1x1 + β2x2 + β3x1x2) 其中,σ是sigmoid函数,β0、β1、β2和β3是需要估计的系数。 这个方程表达的是当x1、x2和x1x2的值给定时,y等于1的概率。我们可以通过最大化似然函数来估计模型参数,或者使用梯度下降等优化算法来最小化成本函数来实现此目的。

智能网联汽车技术期末考试卷B.docx

。。。