numpy.int32怎么改成float32
时间: 2024-04-23 07:03:53 浏览: 146
你可以使用numpy的astype方法将numpy.int32转换为float32,如下所示:
```python
import numpy as np
arr_int32 = np.array([1, 2, 3], dtype=np.int32)
arr_float32 = arr_int32.astype(np.float32)
```
在此示例中,我们将包含整数的numpy数组转换为包含浮点数的numpy数组。
相关问题
model = HetGraphSAGE(nfeat1=drug_feat_dim, nfeat2=protein_feat_dim, nhid=hidden_size, out_dim=drug_node, gamma=gamma) criterion = nn.MSELoss() # MSE损失函数 optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0001) # 优化器 drug_graph = (torch.ones_like(drug_graph.to_dense())).to_sparse() data = (drug_feat.float(), protein_feat.float(), drug_graph.float(), drug_protein_graph.float()) for epoch in range(epochs): model.train() # 模型在train模式 optimizer.zero_grad() # zero_grad 清除上一次的一些梯度 output = model(data) # forward loss = criterion(output[train_mask].float(), drug_graph_label[train_mask].float()) # 只计算Train节点的损失 # 测试模型准确率 #accuracy = (torch.abs(output[test_mask].float() - drug_graph_label[test_mask].float()) < eps).sum() / (drug_graph_label[test_mask].shape[0]) #print("Epoch [{}/{}], train loss: {:.4f}, test accuracy: {:.4f}".format(epoch + 1, epochs, loss.item(), accuracy)) r2 = r2_score(drug_graph_label[test_mask].squeeze().detach().numpy(), output[test_mask].squeeze().detach().numpy()) print("Epoch [{}/{}], train loss: {:.4f}, test R2_score: {:.4f}".format( epoch + 1, epochs, loss.item(), r2)) loss.backward() optimizer.step() 怎么改成用optuna调参
可以使用 Optuna 来调参。首先,您需要确定哪些超参数需要调整,例如学习率、权重衰减、隐藏层维度等。然后,您可以使用 Optuna 创建一个函数,用于训练模型并返回验证集的 R2 得分。最后,您可以使用 Optuna 运行该函数并获得最佳超参数组合。
下面是一些示例代码:
```python
import optuna
def objective(trial):
# 定义超参数搜索范围
lr = trial.suggest_float('lr', 1e-5, 1e-2, log=True)
weight_decay = trial.suggest_float('weight_decay', 1e-6, 1e-3, log=True)
hidden_size = trial.suggest_int('hidden_size', 16, 256, log=True)
# 定义模型和优化器
model = HetGraphSAGE(nfeat1=drug_feat_dim, nfeat2=protein_feat_dim, nhid=hidden_size, out_dim=drug_node, gamma=gamma)
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
# 训练模型
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output = model(data)
loss = criterion(output[train_mask].float(), drug_graph_label[train_mask].float())
r2 = r2_score(drug_graph_label[test_mask].squeeze().detach().numpy(), output[test_mask].squeeze().detach().numpy())
loss.backward()
optimizer.step()
return r2
# 使用 Optuna 运行超参数搜索
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)
# 打印最佳超参数组合
print('Best trial: score={}, params={}'.format(study.best_trial.value, study.best_trial.params))
```
在此示例中,我们使用 Optuna 运行了 100 次试验,并搜索了学习率、权重衰减和隐藏层维度这三个超参数。每次试验,我们都训练模型并返回验证集的 R2 得分。最后,我们打印出最佳超参数组合的得分和参数。注意,在此示例中,我们使用了默认的随机搜索算法,您也可以尝试其他的算法,例如 TPE 算法。
import numpy as np import tensorrt as trt import pycuda.driver as cuda import pycuda.autoinit import time import torch # 1. 确定batch size大小,与导出的trt模型保持一致 BATCH_SIZE = 32 # 2. 选择是否采用FP16精度,与导出的trt模型保持一致 USE_FP16 = True target_dtype = np.float16 if USE_FP16 else np.float32 # 3. 创建Runtime,加载TRT引擎 f = open("resnet_engine.trt", "rb") # 读取trt模型 runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING)) # 创建一个Runtime(传入记录器Logger) engine = runtime.deserialize_cuda_engine(f.read()) # 从文件中加载trt引擎 context = engine.create_execution_context() # 创建context # 4. 分配input和output内存 input_batch = np.random.randn(BATCH_SIZE, 224, 224, 3).astype(target_dtype) output = np.empty([BATCH_SIZE, 1000], dtype = target_dtype) d_input = cuda.mem_alloc(1 * input_batch.nbytes) d_output = cuda.mem_alloc(1 * output.nbytes) bindings = [int(d_input), int(d_output)] stream = cuda.Stream() # 5. 创建predict函数 def predict(batch): # result gets copied into output # transfer input data to device cuda.memcpy_htod_async(d_input, batch, stream) # execute model context.execute_async_v2(bindings, stream.handle, None) # 此处采用异步推理。如果想要同步推理,需将execute_async_v2替换成execute_v2 # transfer predictions back cuda.memcpy_dtoh_async(output, d_output, stream) # syncronize threads stream.synchronize() return output # 6. 调用predict函数进行推理,并记录推理时间 def preprocess_input(input): # input_batch无法直接传给模型,还需要做一定的预处理 # 此处可以添加一些其它的预处理操作(如标准化、归一化等) result = torch.from_numpy(input).transpose(0,2).transpose(1,2) # 利用torch中的transpose,使(224,224,3)——>(3,224,224) return np.array(result, dtype=target_dtype) preprocessed_inputs = np.array([preprocess_input(input) for input in input_batch]) # (BATCH_SIZE,224,224,3)——>(BATCH_SIZE,3,224,224) print("Warming up...") pred = predict(preprocessed_inputs) print("Done warming up!") t0 = time.time() pred = predict(preprocessed_inputs) t = time.time() - t0 print("Prediction cost {:.4f}s".format(t)) 请将这部分代码,改成可以输入电脑摄像头视频的
这段代码是用Python语言实现的,用于引入一些常用的库,例如numpy、tensorrt、pycuda等等。同时,还引入了torch库。其中,numpy是Python中用于快速处理大型数组和矩阵计算的库;tensorrt是NVIDIA推出的深度学习推理引擎,可以将训练好的模型转化为高效的推理模型;pycuda是一个Python接口,用于与CUDA(Compute Unified Device Architecture)进行交互,使得Python能够利用GPU进行高性能计算;torch是一个基于Python的科学计算包,主要面向深度学习领域。
阅读全文