遗传算法求解多目标python
时间: 2023-09-03 17:05:32 浏览: 96
遗传算法解决多目标分配问题
遗传算法是一种优化算法,用于解决多目标问题。在Python中,你可以使用Python的库来实现遗传算法,比如DEAP(Distributed Evolutionary Algorithms in Python)库。DEAP是一个强大的遗传算法和进化计算框架,提供了丰富的功能和工具来解决各种优化问题。
下面是一个使用DEAP库求解多目标问题的简单示例:
```python
import random
from deap import algorithms, base, creator, tools
# 定义多目标问题
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMin)
# 初始化遗传算法参数
toolbox = base.Toolbox()
toolbox.register("attribute", random.random)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attribute, n=2)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
def evaluate(individual):
# 计算目标函数值
return sum(individual),
# 注册评估函数和交叉/变异操作
toolbox.register("evaluate", evaluate)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1)
toolbox.register("select", tools.selNSGA2)
def main():
# 创建种群
population = toolbox.population(n=50)
# 评估初始种群
fitnesses = toolbox.map(toolbox.evaluate, population)
for ind, fit in zip(population, fitnesses):
ind.fitness.values = fit
# 开始进化
num_generations = 50
for gen in range(num_generations):
# 选择下一代个体
offspring = toolbox.select(population, len(population))
阅读全文