antsRegistrationSyN.sh -m brain_subjects.nii.gz -f brain.nii.gz -n 90 -t sr #antsApplyTransforms -i BN.nii.gz -r brain_subjects.nii.gz -t output0GenericAffine.mat output1Warp.nii.gz -o BN_subjects.nii.gz -n NearestNeighbor
时间: 2024-02-12 09:03:13 浏览: 139
AcquisitionofGPSSignal.rar_GPS-Acquisition_The Show_doppler_dopp
这是一组 ANTs 工具箱中的命令,用于将一个被称为“subject”的大脑图像与一个被称为“template”的标准大脑图像对齐。具体来说,`antsRegistrationSyN.sh` 命令用于计算变换矩阵,而 `antsApplyTransforms` 命令则用于将变换应用于另一个图像。下面是这两个命令的详细说明:
- `antsRegistrationSyN.sh -m brain_subjects.nii.gz -f brain.nii.gz -n 90 -t sr`
该命令的作用是将名为 `brain_subjects.nii.gz` 的大脑图像与名为 `brain.nii.gz` 的标准大脑图像对齐。具体来说,它使用了 ANTs 工具箱中的 SyN 算法来计算变换矩阵,其中 `-n 90` 表示使用 90 个网格来进行非线性配准,而 `-t sr` 则表示使用一个多分辨率策略来加速计算。该命令的输出包括一个名为 `output0GenericAffine.mat` 的仿射变换矩阵和一个名为 `output1Warp.nii.gz` 的非线性变换场。这两个文件将用于后面的变换应用。
- `antsApplyTransforms -i BN.nii.gz -r brain_subjects.nii.gz -t output0GenericAffine.mat output1Warp.nii.gz -o BN_subjects.nii.gz -n NearestNeighbor`
该命令的作用是将名为 `BN.nii.gz` 的图像应用于前面计算得到的变换矩阵,以将其对齐到标准大脑图像。具体来说,它使用了 ANTs 工具箱中的 `antsApplyTransforms` 命令,并指定了输入图像 (`-i`)、参考图像 (`-r`)、变换矩阵 (`-t`)、输出图像 (`-o`) 和插值方法 (`-n`)。其中,插值方法使用了最近邻插值 (`NearestNeighbor`),以避免图像变形时引入伪影。最终输出的图像名为 `BN_subjects.nii.gz`。
阅读全文