def forward(self, state): a = torch.tanh(self.l1(state.float())) # Apply batch normalization to the each hidden layer's input a = self.bn1(a) a = torch.tanh(self.l2(a)) a = self.bn2(a) a = torch.tanh(self.l3(a)) # Normalize the transmission power and phase matrix current_power_t = self.compute_power(a.detach()).expand(-1, 2 * self.M ** 2) / np.sqrt(self.power_t) real_normal, imag_normal = self.compute_phase(a.detach()) real_normal = real_normal.expand(-1, self.N) imag_normal = imag_normal.expand(-1, self.N) division_term = torch.cat([current_power_t, real_normal, imag_normal], dim=1) return self.max_action * a / division_term

时间: 2023-06-14 20:06:23 浏览: 46
这段代码是一个用于无线通信的深度强化学习模型的前向传播函数。它接收一个状态变量 state,并将其输入到三个全连接层中,每个层都使用了批量归一化和双曲正切函数作为激活函数。然后,它使用了一些方法来规范化传输功率和相位矩阵,并将它们连接起来,最后将最终的输出乘以一个最大动作值以得到动作。这个模型的目标是学习如何在无线信道中选择最佳的传输功率和相位矩阵,以最大化信道容量。
相关问题

def choose_action(self, state): state = np.array([state]) # 先转成数组再转tensor更高效 state = torch.tensor(state, dtype=torch.float).to(self.device) dist = self.actor(state) value = self.critic(state) action = dist.sample() probs = torch.squeeze(dist.log_prob(action)).item() if self.continuous: action = torch.tanh(action) else: action = torch.squeeze(action).item() value = torch.squeeze(value).item() return action, probs, value

这段代码是一个 PyTorch 实现的 Actor-Critic 算法中的选择动作函数,它接收一个状态 state,并输出一个动作 action、一个概率 probs 和一个价值 value。 具体来说,这个函数首先将 state 转换成一个 numpy 数组,然后将其转换成一个 PyTorch 的 tensor,最后将其移动到指定设备(比如 CPU 或 GPU)上。 接着,函数使用 self.actor 对状态进行前向传播,得到一个分布 dist(比如高斯分布或者离散分布),以及一个值 value(用于评估当前状态的好坏)。 然后,函数从 dist 中采样一个动作 action,并计算出采样该动作的概率 probs(在连续动作空间中,采样后需要进行一定的变换)。 最后,函数将动作 action、概率 probs 和价值 value 返回。 整个过程中,需要注意数据类型的转换和维度的处理,以确保代码的正确性。

def forward(self, state): a = torch.tanh(self.l1(state.float())) a = self.bn1(a) a = torch.tanh(self.l2(a)) a = self.bn2(a) a = torch.tanh(self.l3(a)) current_power_t = self.compute_power(a.detach()).expand(-1, 2 * self.M ** 2) / np.sqrt(self.power_t) real_normal, imag_normal = self.compute_phase(a.detach()) real_normal = real_normal.expand(-1, self.N) imag_normal = imag_normal.expand(-1, self.N) division_term = torch.cat([current_power_t, real_normal, imag_normal], dim=1) return self.max_action * a / division_term逐行解释一下这段代码

这段代码是一个神经网络模型的前向传播过程,逐行解释如下: 1. `def forward(self, state):`: 定义了一个名为 forward 的函数,输入为 state(状态)。 2. `a = torch.tanh(self.l1(state.float()))`: 对输入的状态 state 进行一次全连接层操作 self.l1,并使用 tanh 函数进行激活,得到输出 a。 3. `a = self.bn1(a)`: 对输出 a 进行一次批量归一化操作 self.bn1。 4. `a = torch.tanh(self.l2(a))`: 对批量归一化后的 a 进行第二次全连接层操作 self.l2,并使用 tanh 函数进行激活,得到输出 a。 5. `a = self.bn2(a)`: 对输出 a 进行一次批量归一化操作 self.bn2。 6. `a = torch.tanh(self.l3(a))`: 对批量归一化后的 a 进行第三次全连接层操作 self.l3,并使用 tanh 函数进行激活,得到输出 a。 7. `current_power_t = self.compute_power(a.detach()).expand(-1, 2 * self.M ** 2) / np.sqrt(self.power_t)`: 调用 self.compute_power 方法计算出当前状态下的电力值 current_power_t,并将其扩展成一个大小为 (-1, 2 * self.M ** 2) 的张量,然后除以 np.sqrt(self.power_t)。 8. `real_normal, imag_normal = self.compute_phase(a.detach())`: 调用 self.compute_phase 方法计算出当前状态下的相角值 real_normal 和 imag_normal。 9. `real_normal = real_normal.expand(-1, self.N)`: 将相角值 real_normal 扩展成一个大小为 (-1, self.N) 的张量。 10. `imag_normal = imag_normal.expand(-1, self.N)`: 将相角值 imag_normal 扩展成一个大小为 (-1, self.N) 的张量。 11. `division_term = torch.cat([current_power_t, real_normal, imag_normal], dim=1)`: 将 current_power_t、real_normal 和 imag_normal 沿着列方向拼接起来,形成一个大小为 (-1, 2 * self.M ** 2 + 2 * self.N) 的张量 division_term。 12. `return self.max_action * a / division_term`: 将输出 a 乘以一个最大动作值 self.max_action,并将其除以 division_term,得到最终的输出结果。

相关推荐

# -*- coding: utf-8 -*- """ Created on Fri Mar 5 19:13:21 2021 @author: LXM """ import torch import torch.nn as nn from torch.autograd import Function class UpdateRange(nn.Module): def __init__(self, device): super(UpdateRange, self).__init__() self.device = device self.flag = 0 self.fmin = torch.zeros((1), dtype = torch.float32, device = self.device) self.fmax = torch.zeros((1), dtype = torch.float32, device = self.device) def Update(self, fmin, fmax): if self.flag == 0: self.flag = 1 new_fmin = fmin new_fmax = fmax else: new_fmin = torch.min(fmin, self.fmin) new_fmax = torch.max(fmax, self.fmax) self.fmin.copy_(new_fmin) self.fmax.copy_(new_fmax) @torch.no_grad() def forward(self, input): fmin = torch.min(input) fmax = torch.max(input) self.Update(fmin, fmax) class Round(Function): @staticmethod def forward(self, input): # output = torch.round(input) # output = torch.floor(input) output = input.int().float() return output @staticmethod def backward(self, output): input = output.clone() return input class Quantizer(nn.Module): def __init__(self, bits, device): super(Quantizer, self).__init__() self.bits = bits self.scale = 1 self.UpdateRange = UpdateRange(device) self.qmin = torch.tensor((-((1 << (bits - 1)) - 1)), device = device) self.qmax = torch.tensor((+((1 << (bits - 1)) - 1)), device = device) def round(self, input): output = Round.apply(input) return output def Quantization(self): quant_range = float(1 << (self.bits - 1)) float_range = torch.max(torch.abs(self.UpdateRange.fmin), torch.abs(self.UpdateRange.fmax)) scale = 1 for i in range(32): if torch.round(float_range * (1 << i)) < quant_range: scale = 1 << i else: break self.scale = scale def forward(self, input): if self.training: self.UpdateRange(input) self.Quantization() output = (torch.clamp(self.round(input * self.scale), self.qmin, self.qmax)) / self.scale return output

为以下代码写注释:class TransformerClassifier(torch.nn.Module): def __init__(self, num_labels): super().__init__() self.bert = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=num_labels) # print(self.bert.config.hidden_size) #768 self.dropout = torch.nn.Dropout(0.1) self.classifier1 = torch.nn.Linear(640, 256) self.classifier2 = torch.nn.Linear(256, num_labels) self.regress1 = torch.nn.Linear(640, 256) self.regress2 = torch.nn.Linear(256, 2) self.regress3 = torch.nn.Linear(640, 256) self.regress4 = torch.nn.Linear(256, 2) # self.regress3 = torch.nn.Linear(64, 1) # self.regress3 = torch.nn.Linear(640, 256) # self.regress4 = torch.nn.Linear(256, 1) # self.soft1 = torch.nn.Softmax(dim=1) def forward(self, input_ids, attention_mask, token_type_ids): # outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) # pooled_output = outputs.logits # # pooled_output = self.dropout(pooled_output) # # logits = self.classifier(pooled_output) outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) logits = outputs.logits clas = F.relu(self.classifier1(logits)) clas = self.classifier2(clas) death = F.relu(self.regress1(logits)) # xingqi = F.relu(self.regress2(xingqi)) death = self.regress2(death) life = F.relu(self.regress3(logits)) # xingqi = F.relu(self.regress2(xingqi)) life = self.regress4(life) # fakuan = F.relu(self.regress3(logits)) # fakuan = self.regress4(fakuan) # print(logits.shape) # logits = self.soft1(logits) # print(logits) # print(logits.shape) return clas,death,life

最新推荐

recommend-type

ansys maxwell

ansys maxwell
recommend-type

matlab基于不确定性可达性优化的自主鲁棒操作.zip

matlab基于不确定性可达性优化的自主鲁棒操作.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望