层次分析法代码python

时间: 2023-07-02 18:16:39 浏览: 66
以下是一个简单的层次分析法(AHP)的 Python 代码示例: ```python import numpy as np # 定义判断矩阵 matrix = np.array([ [1, 3, 5], [1/3, 1, 3], [1/5, 1/3, 1] ]) # 计算权重向量 eig_val, eig_vec = np.linalg.eig(matrix) max_eig_val_idx = np.argmax(eig_val) weight_vec = eig_vec[:, max_eig_val_idx].real weight_vec = weight_vec / np.sum(weight_vec) # 打印结果 for i, weight in enumerate(weight_vec): print(f"Criterion {i+1} weight: {weight:.3f}") ``` 这段代码演示了如何使用 Python 和 NumPy 库计算 AHP 权重向量。首先,我们定义一个判断矩阵 `matrix`,其中每个元素 $a_{ij}$ 表示准则 $i$ 相对于准则 $j$ 的重要性程度。然后,使用 `numpy.linalg.eig` 计算矩阵的特征向量和特征值。根据最大特征值的索引,我们可以得到权重向量。最后,我们将权重向量标准化,并打印结果。
相关问题

层次分析法Python代码

层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策的方法,其目标是通过对准则的相对重要性进行定量评估,并对各个备选方案进行排序。下面是一个使用Python实现AHP的代码示例: ```python import numpy as np from numpy import linalg class AHP: def __init__(self, matrix): self.matrix = matrix def cal_weight_by_arithmetic_method(self): n = len(self.matrix) b = np.sum(self.matrix, axis=0) normal_a = self.matrix / b average_weight = np.mean(normal_a, axis=1) return average_weight def cal_weight_by_geometric_method(self): n = len(self.matrix) b = np.prod(self.matrix, axis=1) c = np.power(b, 1/n) average_weight = c / np.sum(c) return average_weight def cal_weight_by_eigenvalue_method(self): n = len(self.matrix) w, v = linalg.eig(self.matrix) eigenvalue = np.max(w) eigenvector = v[:, np.argmax(w)] average_weight = eigenvector / np.sum(eigenvector) return average_weight # 示例用法 if __name__ == "__main__": b = np.array([[1, 1/3, 1/8], [3, 1, 1/3], [8, 3, 1]]) ahp = AHP(b) weight1 = ahp.cal_weight_by_arithmetic_method() weight2 = ahp.cal_weight_by_geometric_method() weight3 = ahp.cal_weight_by_eigenvalue_method() ``` 这段代码实现了AHP的算术平均法、几何平均法和特征值法,可以根据输入的判断矩阵计算出相应的权重。其中,`cal_weight_by_arithmetic_method()`函数实现了算术平均法,`cal_weight_by_geometric_method()`函数实现了几何平均法,`cal_weight_by_eigenvalue_method()`函数实现了特征值法。每个方法返回的是一个代表权重的一维数组。 请注意,代码中使用了NumPy库进行矩阵运算和线性代数计算。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [数学建模——层次分析法Python代码](https://blog.csdn.net/qq_45934521/article/details/118972017)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [AHP层次分析法与python代码讲解(处理论文、建模)](https://blog.csdn.net/knighthood2001/article/details/127519604)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

python层次分析法代码

以下是使用Python实现层次分析法的示例代码: ```python import numpy as np # 创建判断矩阵 def create_matrix(n): matrix = np.zeros((n, n)) for i in range(n): for j in range(n): if i != j: matrix[i][j] = 1 / float(input("请输入第%d个专家对第%d个指标的重要程度:" % (i+1, j+1))) return matrix # 计算权重向量 def calculate_weight(matrix): n = len(matrix) weight = np.zeros(n) for i in range(n): weight[i] = np.prod(matrix[i]) ** (1/float(n)) weight_sum = np.sum(weight) weight = weight / weight_sum return weight # 计算一致性比率CR def calculate_CR(matrix, weight): n = len(matrix) lambda_max = np.sum(np.dot(matrix, weight) / weight) CI = (lambda_max - n) / (n - 1) RI = [0, 0, 0.58, 0.90, 1.12, 1.24, 1.32, 1.41, 1.45, 1.49] CR = CI / RI[n-1] return CR if __name__ == "__main__": n = int(input("请输入指标个数:")) matrix = create_matrix(n) weight = calculate_weight(matrix) CR = calculate_CR(matrix, weight) if CR < 0.1: print("一致性检验通过!") print("权重向量为:", weight) else: print("一致性检验未通过,请重新输入!") ``` 使用时,需要先输入指标个数,然后输入各个专家对各个指标的重要程度,最后输出计算得到的权重向量和一致性检验结果。若一致性检验通过,权重向量即为最终权重,反之需要重新输入。

相关推荐

最新推荐

recommend-type

python实现AHP算法的方法实例(层次分析法)

Python实现的AHP算法,即层次分析法(Analytic Hierarchy Process),是由T. L. Saaty提出的,用于解决多准则决策分析中的权重确定问题。该方法通过构建判断矩阵,对比不同因素之间的相对重要性,然后进行一致性检验...
recommend-type

AHP层次分析法计算权重、特征值、特征向量

AHP层次分析法计算权重、特征值、特征向量,第一作者刘兴,其他地方下载需要47个币 【 尚有疑问,欢迎沟通!! 1.CSDN上有人说可用; 2.亲自试验,代码流畅,但个人感觉特征值、特征向量存疑; 3.用java求出的特征...
recommend-type

Dijkstra算法的详细介绍

dijkstra算法
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**