这段代码为什么对非高斯噪声滤波效果好于高斯噪声 function [Xo,particle_pre,particle,weight_pre,weight]=particle_filter(particle,y0,B,R,Q,N,k,u_Q,ResampleStrategy) for jj=1:N % Xsetpre(jj) = process_equation(particle(jj),k)+sqrt(Q)*randn+gamrnd(1,1); Xsetpre(jj) = process_equation(particle(jj),k)+sqrt(Q)*randn;%采样获得N个粒子 ypart =detection_equation(Xsetpre(jj),k) ; %每个粒子对应观测值 vhat = y0 - ypart;%与真实观测之间的似然 weight(jj)=1/(det(R)^(1/2))*exp(-1/2*vhat'*inv(R)*vhat)+ 1e-99;%每个粒子的似然即相似度 end %归一化 wsum = sum(weight); weight=weight./wsum; weight_pre=weight; particle_pre=Xsetpre; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight); %多项式重采样 end weight=weight(outIndex); particle=Xsetpre(outIndex); Xo=mean(particle);

时间: 2024-04-05 19:32:12 浏览: 23
这段代码使用了粒子滤波算法,它是一种基于贝叶斯滤波框架的非参数滤波方法,可以处理非高斯噪声和非线性系统。具体来说,粒子滤波通过引入一组随机粒子来描述状态的后验概率密度函数,其中每个粒子对应一个状态值,通过加权平均来估计状态的真实值。相比于传统的高斯滤波方法,粒子滤波不需要假设噪声是高斯分布,因此对非高斯噪声的滤波效果更好。 在这段代码中,每个粒子对应一个状态值,通过加入噪声来采样得到一组初始粒子集合,并计算每个粒子的权重,即似然或相似度。在非高斯噪声的情况下,似然函数不能用高斯分布来描述,因此使用了一个自定义的似然函数来计算相似度。然后对权重进行归一化,使用不同的重采样策略来更新粒子集合,得到下一时刻的粒子集合。最后,通过计算粒子集合的加权平均值来估计状态的真实值。 总之,这段代码通过使用粒子滤波算法来处理非高斯噪声,采用不同的重采样策略来更新粒子集合,从而有效地滤波非高斯噪声,提高了滤波的效果。
相关问题

随机输入非高斯噪声的粒子滤波算法

粒子滤波算法(Particle Filter)是一种基于蒙特卡罗方法的滤波算法,可以用于非线性非高斯系统的状态估计。在输入非高斯噪声的情况下,可以采用以下步骤进行粒子滤波算法: 1. 初始化粒子集合,其中每个粒子表示系统状态的一个假设,并给每个粒子赋予一个初始权重。 2. 根据系统的动力学模型,对每个粒子进行状态转移,得到新的粒子集合。 3. 根据观测模型,计算每个粒子的权重,即该粒子与观测值的匹配程度。 4. 对粒子进行重采样,即按照权重对粒子进行抽样,得到新的粒子集合。权重较高的粒子被选中的概率较大,从而可以使粒子集合更加准确地反映系统状态。 5. 重复步骤2-4,直到满足停止准则为止,例如达到一定的粒子数目或粒子集合的方差小于某个阈值。 需要注意的是,在输入非高斯噪声的情况下,粒子滤波算法的效果可能会受到影响。因此,可以考虑采用其他改进的粒子滤波算法,例如扩展卡尔曼粒子滤波(Extended Kalman Particle Filter)或集合卡尔曼粒子滤波(Ensemble Kalman Particle Filter)。

随机输入非高斯噪声的粒子滤波算法matlab程序

以下是一个使用Matlab编写的随机输入非高斯噪声的粒子滤波算法程序,供参考: ```matlab % 定义粒子滤波算法函数 function x = particle_filter(y, N, T, x0, sigma_v, sigma_w) % 初始化粒子集合 x = zeros(N, T); x(:, 1) = normrnd(x0, sigma_w, [N, 1]); w = ones(N, 1) / N; % 粒子滤波算法主循环 for t = 2:T % 粒子采样和重采样 x_prior = normrnd(x(:, t-1), sigma_v, [N, 1]); w = w .* exp(-0.5 * (y(t) - x_prior) .^ 2 / sigma_w ^ 2); w = w / sum(w); idx = randsample(N, N, true, w); x(:, t) = x_prior(idx); end end % 生成测试数据 T = 100; % 数据点数 sigma_v = 1; % 系统噪声方差 sigma_w = 2; % 观测噪声方差 x0 = 0; % 初始状态 N = 1000; % 粒子数目 t = 1:T; x_true = sin(0.2 * t) + cos(0.1 * t); % 系统真实状态 y = x_true + normrnd(0, sigma_w, [1, T]); % 观测值 % 使用粒子滤波算法进行状态估计 x = particle_filter(y, N, T, x0, sigma_v, sigma_w); % 绘制结果 figure; plot(t, x_true, 'r-', 'LineWidth', 2); hold on; plot(t, y, 'g.', 'MarkerSize', 10); plot(t, mean(x, 1), 'b-', 'LineWidth', 2); xlabel('Time'); ylabel('State'); title('Particle Filter for Non-Gaussian Noise'); legend('True State', 'Observation', 'Estimated State'); grid on; ``` 在上述程序中,我们定义了一个名为`particle_filter`的粒子滤波算法函数,该函数接受观测值`y`、粒子数目`N`、数据点数目`T`、初始状态`x0`、系统噪声方差`sigma_v`和观测噪声方差`sigma_w`作为输入,并返回状态估计结果`x`。 接下来,我们生成了一组测试数据,并使用`particle_filter`函数进行状态估计。最后,我们使用`plot`函数将真实状态、观测值和估计状态绘制在同一张图上,以便于观察结果。

相关推荐

这段代码为什么进行二级重采样 for ii=1:N for jj=1:N Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn+gamrnd(1,1))+sqrt(Q)*randn+gamrnd(1,1); % Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn)+sqrt(Q)*randn;%采样获得N个粒子 ypart =detection_equation(Xsetpre(ii,jj),k); %预测值 vhat = y0 - ypart; weight(ii,jj)=1/(det(R)^(1/2))*exp(-1/2*vhat'*inv(R)*vhat)+ 1e-99; end %归一化 wsumii = sum(weight(ii,:)); weight_ii=weight(ii,:)./wsumii; Xset_ii=Xsetpre(ii,:); weight_pre=weight; particle_pre=Xsetpre; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_ii); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_ii); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_ii); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_ii); %多项式重采样 end %U(jj) %x(ii) weight_ii=weight_ii(outIndex); part_ii=Xset_ii(outIndex); particle(ii,:)=part_ii; weight(ii,:)=weight_ii; X_ii(ii)=mean(part_ii); end wsumjj = sum(sum(weight),2); weight_u=weight./wsumjj; weight_jj=(sum(weight_u,2))'; Xset_jj=X_ii; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_jj); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_jj); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_jj); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_jj); %多项式重采样 end weight_jj=weight_jj(outIndex); part_jj=Xset_jj(outIndex); Xo=mean(part_jj)

function [Xo,particle]=particle_filter_u2(particle,y0,B,R,Q,N,k,u_Q,ResampleStrategy) for ii=1:N for jj=1:N Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn+gamrnd(1,1))+sqrt(Q)*randn+gamrnd(1,1); % Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn)+sqrt(Q)*randn;%采样获得N个粒子 ypart =detection_equation(Xsetpre(ii,jj),k); %预测值 vhat = y0 - ypart; weight(ii,jj)=1/(det(R)^(1/2))*exp(-1/2*vhat'*inv(R)*vhat)+ 1e-99; end %归一化 wsumii = sum(weight(ii,:)); weight_ii=weight(ii,:)./wsumii; Xset_ii=Xsetpre(ii,:); weight_pre=weight; particle_pre=Xsetpre; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_ii); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_ii); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_ii); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_ii); %多项式重采样 end %U(jj) %x(ii) weight_ii=weight_ii(outIndex); part_ii=Xset_ii(outIndex); particle(ii,:)=part_ii; weight(ii,:)=weight_ii; X_ii(ii)=mean(part_ii); end wsumjj = sum(sum(weight),2); weight_u=weight./wsumjj; weight_jj=(sum(weight_u,2))'; Xset_jj=X_ii; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_jj); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_jj); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_jj); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_jj); %多项式重采样 end weight_jj=weight_jj(outIndex); part_jj=Xset_jj(outIndex); Xo=mean(part_jj);

这段代码两次重采样分别是对什么 for ii=1:N for jj=1:N Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn+gamrnd(1,1))+sqrt(Q)randn+gamrnd(1,1); % Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B(sqrt(u_Q)*randn)+sqrt(Q)*randn;%采样获得N个粒子 ypart =detection_equation(Xsetpre(ii,jj),k); %预测值 vhat = y0 - ypart; weight(ii,jj)=1/(det(R)^(1/2))exp(-1/2vhat'*inv(R)*vhat)+ 1e-99; end %归一化 wsumii = sum(weight(ii,:)); weight_ii=weight(ii,:)./wsumii; Xset_ii=Xsetpre(ii,:); weight_pre=weight; particle_pre=Xsetpre; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_ii); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_ii); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_ii); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_ii); %多项式重采样 end %U(jj) %x(ii) weight_ii=weight_ii(outIndex); part_ii=Xset_ii(outIndex); particle(ii,:)=part_ii; weight(ii,:)=weight_ii; X_ii(ii)=mean(part_ii); end wsumjj = sum(sum(weight),2); weight_u=weight./wsumjj; weight_jj=(sum(weight_u,2))'; Xset_jj=X_ii; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_jj); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_jj); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_jj); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_jj); %多项式重采样 end weight_jj=weight_jj(outIndex); part_jj=Xset_jj(outIndex); Xo=mean(part_jj)

最新推荐

recommend-type

grpcio-1.49.1-cp37-cp37m-macosx_10_10_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

scratch2源码射击

scratch2源码射击提取方式是百度网盘分享地址
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

get() { return this.photoState },

这是一个 JavaScript 中的方法定义,它定义了一个名为 `get` 的方法。这个方法没有参数,它返回了 `this.photoState`。在这个方法中,`this` 是指当前对象,而 `photoState` 是该对象的一个属性。通常情况下,`get` 方法用于获取对象的属性值,并且可以在获取属性值之前进行一些逻辑操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

id=1 and 1=3 union select 1,group_concat(uismkhbuow_name) from xtfrfdxcsk.uismkhbuow ;哪错了

这是一个 SQL 注入攻击的语句,其中 `1=3` 是永远不成立的条件,所以整个语句都是错误的。这个语句的目的是通过注入一段查询语句,来获取 `xtfrfdxcsk.uismkhbuow` 表中的数据。但是这样的操作是非法的,不仅会破坏数据库的完整性和安全性,还可能触犯法律。建议不要尝试进行 SQL 注入攻击。