def __call__(self, x): #################### '''实现模型函数体,返回未归一化的logits''' #################### flat_x = tf.reshape(x, shape=[-1, 28 * 28]) h1 = tf.sigmoid(tf.matmul(flat_x, self.W1) + self.b1) # 老师的=.tanh 另外一种方法=.relu 残差函数 另外一种方法=.sigmoid函数 logits = tf.matmul(h1, self.W2) + self.b2 return logits,这段代码的含义是什么
时间: 2024-04-01 19:35:27 浏览: 59
Python中有趣在__call__函数
这段代码定义了模型的计算过程,即实现了模型的前向传播过程。传入参数 x 表示输入的数据,通过将输入的数据展平成一维的向量 flat_x,然后通过矩阵乘法将其与 W1 相乘并加上偏差 b1,再通过激活函数 sigmoid 得到 h1。接着,将 h1 与 W2 相乘并加上偏差 b2,最后得到未归一化的 logits。其中 sigmoid 函数是一种常用的激活函数,可以将结果映射到 0 到 1 之间,通常用于二分类任务。该函数的返回值是 logits,表示模型的输出结果,未经过 softmax 归一化处理。
阅读全文