x_value= np.array([np.min(X[:,1]),np.max(X[:,1])]) #创建一个数组x_value,包含X数组第二列的最小值和最大值 y_value=-(theta[0] +theta[1]*x_value)/theta[2]
时间: 2024-01-03 16:04:05 浏览: 102
array-min:获取数字数组中的最小值
这段代码是用来计算逻辑回归模型的决策边界的。其中,X是包含训练数据的特征矩阵,第二列为特征值,theta是模型的参数向量。x_value包含了第二列特征值的最小值和最大值,y_value是根据模型参数计算得到的对应的决策边界上的y值。具体地,这里使用了逻辑回归模型的决策边界公式:
θ0 + θ1x1 + θ2x2 = 0
将其转换为y=mx+b的形式,就可以得到:
y = (-θ0 - θ1x1) / θ2
其中,m为斜率,b为截距。在二维平面上,决策边界就是一条直线,可以用上述公式计算得到。
阅读全文