怎么把二分迭代法解微分方程的迭代过程打印出来python
时间: 2023-11-03 15:04:36 浏览: 125
您可以使用以下代码将迭代过程打印出来:
```
import numpy as np
def bisection_iter(f, a, b, N):
"""
Solves f(x) = 0 on the interval [a,b] using N iterations of bisection method.
Returns a list of the intermediate bisection values.
"""
p = [] # list to store intermediate bisection values
for n in range(1, N+1):
c = (a + b)/2.0 # midpoint
p.append(c)
if f(c) == 0:
return p
elif f(c)*f(a) < 0:
b = c
else:
a = c
return p
def solve_differential_equation(f, x0, y0, x_range, N):
"""
Solves the differential equation y' = f(x,y) with initial condition y(x0) = y0
on the interval x_range = [x0, x1] using N iterations of bisection method.
Returns a list of tuples (x, y) representing the approximation of the solution.
"""
h = (x_range[1] - x_range[0])/float(N)
x = x0
y = y0
solution = [(x, y)]
for i in range(N):
p = bisection_iter(lambda z: z - y - h*f(x+h,z), y, y+h*f(x,y), 10)
y = p[-1]
x = x + h
solution.append((x, y))
return solution
# example usage
f = lambda x, y: x - y # differential equation y' = x - y
solution = solve_differential_equation(f, 0, 1, [0, 1], 10)
for x, y in solution:
print("x = {:.3f}, y = {:.3f}".format(x, y))
```
这里的函数 `solve_differential_equation` 使用二分迭代法来计算微分方程的解,其中参数 `f` 是微分方程的右侧,即 $y'(x) = f(x,y(x))$。将解的近似值存储在一个列表中返回,而函数 `bisection_iter` 是一个二分迭代法的实现,用于计算微分方程的每个步骤。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)