torch.fft.rfftn函数
时间: 2024-04-27 10:16:46 浏览: 541
torch.fft.rfftn函数是PyTorch中用于进行实数输入的快速傅里叶变换(FFT)的函数。rfftn代表实数输入的快速傅里叶变换(Real Fast Fourier Transform N-dimensional)。该函数可以将N维实数输入转换为复数输出的频域表示。
该函数的语法如下:
torch.fft.rfftn(input, s=None, dim=None, norm=None)
参数说明:
- input:输入的实数张量,可以是任意形状的张量。
- s:可选参数,指定输出频域张量的大小。如果未指定,则默认为输入张量的形状。
- dim:可选参数,指定进行FFT的维度。如果未指定,则默认对最后一维进行FFT。
- norm:可选参数,指定是否进行归一化。如果设置为"ortho",则进行归一化;如果设置为None,则不进行归一化。
返回值:
返回一个复数张量,表示输入张量的频域表示。
相关问题
dct = torch.fft.dct(torch.eye(256), norm='ortho') AttributeError: module 'torch.fft' has no attribute 'dct'
非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。
下面是一个修正后的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义离散余弦变换(DCT)系数矩阵
dct_matrix = torch.zeros(256, 256)
for i in range(256):
for j in range(256):
dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256))
# 定义 OMP 算法
def omp(A, y, k):
m, n = A.shape
x = torch.zeros(n, 1)
residual = y.clone()
support = []
for _ in range(k):
projections = torch.abs(A.t().matmul(residual))
index = torch.argmax(projections)
support.append(index)
AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support]))
x_new = AtA_inv.matmul(A[:, support].t()).matmul(y)
residual = y - A[:, support].matmul(x_new)
x[support] = x_new
return x
# 加载原始图像
image = torch.randn(256, 256)
# 压缩感知成像
measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real
compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1))
# 使用 OMP 进行重构
reconstructed = omp(dct_matrix, compressed, k=100)
# 计算重构误差
mse = nn.MSELoss()
reconstruction_error = mse(image, reconstructed.reshape(image.shape))
print("重构误差:", reconstruction_error.item())
```
在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。
请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
torch.fft.fft
回答: torch.fft.fft函数是PyTorch中用于执行N维离散傅里叶变换(DFT)的函数。它将输入张量从时域转换为频域,并返回相应的频域表示。要使用torch.fft.fft函数,你需要导入torch.fft模块,并使用该函数提供的参数来指定输入张量的形状和数据类型。例如,通过以下代码可以计算一个大小为10x10的复数张量的FFT:import torch.fft>>> x = torch.rand(10, 10, dtype=torch.complex64)>>> fftn = torch.fft.fftn(t)[1这将返回一个与输入张量相同形状的频域张量。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [torch.fft](https://blog.csdn.net/qq_42676511/article/details/122385195)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
- *3* [pytorch 笔记:torch.fft](https://blog.csdn.net/qq_40206371/article/details/129364397)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)