matlab函数Shifted Ackley function是什么
时间: 2023-09-18 16:11:37 浏览: 69
以下是一个基本的红黑树实现,包括插入和删除操作:
```
#include <stdio.h>
#include <stdlib.h>
enum Color {RED, BLACK};
typedef struct Node {
int key;
enum Color color;
struct Node *left;
struct Node *right;
struct Node *parent;
} Node;
Node *root = NULL;
void rotate_left(Node *x) {
Node *y = x->right;
x->right = y->left;
if (y->left != NULL) {
y->left->parent = x;
}
y->parent = x->parent;
if (x->parent == NULL) {
root = y;
} else if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
y->left = x;
x->parent = y;
}
void rotate_right(Node *x) {
Node *y = x->left;
x->left = y->right;
if (y->right != NULL) {
y->right->parent = x;
}
y->parent = x->parent;
if (x->parent == NULL) {
root = y;
} else if (x == x->parent->right) {
x->parent->right = y;
} else {
x->parent->left = y;
}
y->right = x;
x->parent = y;
}
void insert_fixup(Node *z) {
while (z->parent != NULL && z->parent->color == RED) {
if (z->parent == z->parent->parent->left) {
Node *y = z->parent->parent->right;
if (y != NULL && y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent;
} else {
if (z == z->parent->right) {
z = z->parent;
rotate_left(z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rotate_right(z->parent->parent);
}
} else {
Node *y = z->parent->parent->left;
if (y != NULL && y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent;
} else {
if (z == z->parent->left) {
z = z->parent;
rotate_right(z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rotate_left(z->parent->parent);
}
}
}
root->color = BLACK;
}
void insert(int key) {
Node *z = (Node *)malloc(sizeof(Node));
z->key = key;
z->color = RED;
z->left = NULL;
z->right = NULL;
z->parent = NULL;
Node *y = NULL;
Node *x = root;
while (x != NULL) {
y = x;
if (z->key < x->key) {
x = x->left;
} else {
x = x->right;
}
}
z->parent = y;
if (y == NULL) {
root = z;
} else if (z->key < y->key) {
y->left = z;
} else {
y->right = z;
}
insert_fixup(z);
}
Node *minimum(Node *x) {
while (x->left != NULL) {
x = x->left;
}
return x;
}
void delete_fixup(Node *x) {
while (x != root && x->color == BLACK) {
if (x == x->parent->left) {
Node *w = x->parent->right;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
rotate_left(x->parent);
w = x->parent->right;
}
if (w->left->color == BLACK && w->right->color == BLACK) {
w->color = RED;
x = x->parent;
} else {
if (w->right->color == BLACK) {
w->left->color = BLACK;
w->color = RED;
rotate_right(w);
w = x->parent->right;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->right->color = BLACK;
rotate_left(x->parent);
x = root;
}
} else {
Node *w = x->parent->left;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
rotate_right(x->parent);
w = x->parent->left;
}
if (w->left->color == BLACK && w->right->color == BLACK) {
w->color = RED;
x = x->parent;
} else {
if (w->left->color == BLACK) {
w->right->color = BLACK;
w->color = RED;
rotate_left(w);
w = x->parent->left;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->left->color = BLACK;
rotate_right(x->parent);
x = root;
}
}
}
x->color = BLACK;
}
void delete(int key) {
Node *z = root;
Node *x, *y;
while (z != NULL) {
if (key == z->key) {
break;
} else if (key < z->key) {
z = z->left;
} else {
z = z->right;
}
}
if (z == NULL) {
return;
}
if (z->left == NULL || z->right == NULL) {
y = z;
} else {
y = minimum(z->right);
}
if (y->left != NULL) {
x = y->left;
} else {
x = y->right;
}
if (x != NULL) {
x->parent = y->parent;
}
if (y->parent == NULL) {
root = x;
} else if (y == y->parent->left) {
y->parent->left = x;
} else {
y->parent->right = x;
}
if (y != z) {
z->key = y->key;
}
if (y->color == BLACK) {
delete_fixup(x);
}
}
void inorder(Node *x) {
if (x != NULL) {
inorder(x->left);
printf("%d ", x->key);
inorder(x->right);
}
}
int main() {
insert(7);
insert(3);
insert(18);
insert(10);
insert(22);
insert(8);
insert(11);
insert(26);
insert(2);
insert(6);
insert(13);
printf("Inorder traversal: ");
inorder(root);
printf("\n");
delete(18);
delete(11);
delete(3);
delete(10);
printf("Inorder traversal: ");
inorder(root);
printf("\n");
return 0;
}
```
以上代码实现了红黑树的基本操作,包括左旋、右旋、插入、删除等。可以通过调用 `insert` 和 `delete` 函数来插入和删除元素,通过 `inorder` 函数遍历整个树。
阅读全文