epoch:0 batch:50 loss:0.9536240696907043 train_acc:0.71875 dev_acc:0.7509765625
时间: 2023-09-23 12:05:35 浏览: 95
这是一个训练模型的输出,其中包括了训练过程中的 epoch、batch、损失值、训练准确率和验证准确率。在第 0 个 epoch 的第 50 个 batch 中,损失值为 0.9536,训练准确率为 0.7187,验证准确率为 0.7509。这些指标可以帮助我们监控模型的训练过程,以便在训练过程中进行调整和优化。
相关问题
def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc def test(model, verify_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(test_loader): outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc # Instantiate the model model = CNN() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Instantiate the data loaders train_dataset = MyDataset1('1MATRICE') train_loader = DataLoader(train_dataset, batch_size=5, shuffle=True) test_dataset = MyDataset2('2MATRICE') test_loader = DataLoader(test_dataset, batch_size=5, shuffle=False) train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(500): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc))
这是一个基于PyTorch框架的CNN模型的训练过程。代码中定义了两个函数:train和test,分别用于训练模型和测试模型。
在训练过程中,首先将模型设置为训练模式,然后遍历训练数据集,对每个batch的数据进行前向传播、反向传播和优化器更新。在每个batch的训练结束后,计算该batch的损失和精度,并将其累加到总的训练损失和训练精度中。
在测试过程中,首先将模型设置为评估模式,然后遍历测试数据集,对每个batch的数据进行前向传播和损失计算。在每个batch的测试结束后,计算该batch的损失和精度,并将其累加到总的测试损失和测试精度中。
最后,将训练过程中的损失和精度以及测试过程中的损失和精度保存到相应的列表中,并打印出当前epoch的训练损失、训练精度、测试损失和测试精度。
整个训练过程会重复执行500个epoch,每个epoch都是一个完整的训练和测试过程。
import matplotlib.pyplot as plt train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(100): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc)) # 绘制损失函数曲线 plt.plot(train_losses, label='Train Loss') plt.plot(test_losses, label='Test Loss') plt.legend() plt.show() # 绘制准确率曲线 plt.plot(train_accs, label='Train Acc') plt.plot(test_accs, label='Test Acc') plt.legend() plt.show() 图像纵坐标设置为0~1
可以通过设置y轴的范围来将图像纵坐标设置为0~1。可以使用`ylim()`函数设置y轴的范围,例如:
``` python
# 绘制损失函数曲线
plt.plot(train_losses, label='Train Loss')
plt.plot(test_losses, label='Test Loss')
plt.ylim([0, 1]) # 设置y轴范围为0~1
plt.legend()
plt.show()
# 绘制准确率曲线
plt.plot(train_accs, label='Train Acc')
plt.plot(test_accs, label='Test Acc')
plt.ylim([0, 1]) # 设置y轴范围为0~1
plt.legend()
plt.show()
```
在这段代码中,`ylim()`函数被用于设置y轴的范围为0~1。这样,损失函数和准确率的图表纵坐标的范围就被限制在了0~1之间。
阅读全文