Epoch 0 - Loss: 42.7033 Epoch 100 - Loss: 1.2580 Epoch 200 - Loss: 1.0588 Epoch 300 - Loss: 0.9649 Epoch 400 - Loss: 0.7881 Epoch 500 - Loss: 0.7288 Epoch 600 - Loss: 0.6999 Epoch 700 - Loss: 0.6862 Epoch 800 - Loss: 0.6809 Epoch 900 - Loss: 0.6776 Epoch 1000 - Loss: 0.6754 Epoch 1100 - Loss: 0.6734 Epoch 1200 - Loss: 0.6704 Epoch 1300 - Loss: 0.6683 Epoch 1400 - Loss: 0.6668 Epoch 1500 - Loss: 0.6476 Epoch 1600 - Loss: 0.6442 Epoch 1700 - Loss: 0.6431 Epoch 1800 - Loss: 0.6423 Epoch 1900 - Loss: 0.6418 Epoch 2000 - Loss: 0.6411 Epoch 2100 - Loss: 0.6404 Epoch 2200 - Loss: 0.6399 Epoch 2300 - Loss: 0.6396 Epoch 2400 - Loss: 0.6393 Epoch 2500 - Loss: 0.6392 Epoch 2600 - Loss: 0.6390 Epoch 2700 - Loss: 0.6388 Epoch 2800 - Loss: 0.6386 Epoch 2900 - Loss: 0.6385 Test Loss: 1.1399
时间: 2024-04-06 16:32:59 浏览: 134
这也是一个训练神经网络的过程,每个Epoch代表一次完整的训练循环。Loss表示模型在训练过程中的误差,随着Epoch的增加,Loss逐渐减小,这说明模型在学习中逐渐优化。最终的Test Loss为1.1399,表示模型在测试集上的误差较小,但是相对于第一个例子,误差较大,这可能是因为模型的复杂度不够,或者数据集的质量不够高。需要根据具体任务和数据集来评估模型的表现。
相关问题
Epoch 0 - Loss: 53.2891 Epoch 100 - Loss: 3.8639 Epoch 200 - Loss: 1.2792 Epoch 300 - Loss: 1.0363 Epoch 400 - Loss: 0.8841 Epoch 500 - Loss: 0.7888 Epoch 600 - Loss: 0.7177 Epoch 700 - Loss: 0.6763 Epoch 800 - Loss: 0.6633 Epoch 900 - Loss: 0.6511 Epoch 1000 - Loss: 0.6441 Epoch 1100 - Loss: 0.6383 Epoch 1200 - Loss: 0.6335 Epoch 1300 - Loss: 0.6292 Epoch 1400 - Loss: 0.6241 Epoch 1500 - Loss: 0.6200 Epoch 1600 - Loss: 0.6169 Epoch 1700 - Loss: 0.6141 Epoch 1800 - Loss: 0.6112 Epoch 1900 - Loss: 0.6089 Test Loss: 0.9853
这段代码是一个训练了2000个epochs的神经网络模型,每100个epochs打印一次训练集上的损失值。根据打印出来的信息,可以看出随着训练的进行,损失值逐渐减小,而且训练了更多的epochs,损失值下降的更为明显。最后在测试集上的均方误差损失值为0.9853,说明该模型在测试集上的预测效果比上一个模型更好。
Epoch 0 - Loss: 29.517078385136386 Epoch 100 - Loss: 0.020163969858276648 Epoch 200 - Loss: 0.020163969858276648 Epoch 300 - Loss: 0.020163969858276648 Epoch 400 - Loss: 0.020163969858276648 Epoch 500 - Loss: 0.020163969858276648 Epoch 600 - Loss: 0.020163969858276648 Epoch 700 - Loss: 0.020163969858276648 Epoch 800 - Loss: 0.020163969858276648 Epoch 900 - Loss: 0.020163969858276648 Epoch 1000 - Loss: 0.020163969858276648 Epoch 1100 - Loss: 0.020163969858276648 Epoch 1200 - Loss: 0.020163969858276648 Epoch 1300 - Loss: 0.020163969858276648 Epoch 1400 - Loss: 0.020163969858276648 Epoch 1500 - Loss: 0.020163969858276648 Epoch 1600 - Loss: 0.020163969858276648 Epoch 1700 - Loss: 0.020163969858276648 Epoch 1800 - Loss: 0.020163969858276648 Epoch 1900 - Loss: 0.020163969858276648
这是一个训练神经网络的过程,输出的信息包括每个 epoch 的训练损失值。损失值是网络预测结果与真实值之间的差异程度,损失值越小,表示网络预测结果越接近真实值。在这个例子中,可以看到随着 epoch 的增加,损失值逐渐减小,表明神经网络的预测能力不断提高,最终收敛于一个较小的值。这说明网络已经训练好了,可以使用它进行预测了。
阅读全文