Epoch 0 - Loss: 36.574472437885824 Epoch 100 - Loss: 0.030855967782900937 Epoch 200 - Loss: 0.0226197717514487 Epoch 300 - Loss: 0.01840856148718281 Epoch 400 - Loss: 0.015602010414969489 Epoch 500 - Loss: 0.01357612106380239 Epoch 600 - Loss: 0.012029287027710892 Epoch 700 - Loss: 0.01082707311663311 Epoch 800 - Loss: 0.009819239353529498 Epoch 900 - Loss: 0.008977264898531814
时间: 2024-04-05 17:34:36 浏览: 174
Epoch200-Total_Loss2.0690-Val_Loss2.3955.pth
5星 · 资源好评率100%
这也是一个训练神经网络的过程输出,其中包含了每一个 epoch 的训练损失(loss)。与之前的输出不同的是,这个模型的训练损失一开始很大,但随着训练次数的增加,逐渐减小,直到达到一个较小的值。
这个过程表明,模型在初始阶段并没有学习到有效的特征表示,导致预测结果与实际结果之间的差异很大,因此训练损失很大。但随着训练次数的增加,模型学习到了更好的特征表示,使得预测结果与实际结果之间的差异逐渐减小,因此训练损失也逐渐减小。
需要注意的是,训练损失并不一定能够完全反映模型的性能。为了更准确地评估模型的性能,需要在训练结束后使用测试数据进行评估。
阅读全文