filepath = "02weights-{epoch:02d}-{loss:.4f}.hdf5"
时间: 2024-02-19 12:02:27 浏览: 78
这是一个用于保存模型权重的文件路径,其中包含了格式化字符串,具体含义如下:
- "02weights-":文件名前缀,表示保存的文件名以 "02weights-" 开头。
- "{epoch:02d}":表示保存的文件名中包含模型训练的轮数,使用 2 位数字表示,不足两位的数字前面补零。例如,第 1 轮保存的文件名为 02weights-01-xxx.hdf5。
- "{loss:.4f}":表示保存的文件名中包含模型在该轮训练中的损失值,使用小数表示,保留 4 位小数。例如,损失值为 0.12345678 时保存的文件名为 02weights-xx-0.1235.hdf5。
- ".hdf5":文件名后缀,表示保存的文件格式为 HDF5 格式。
相关问题
import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM, Dropout from keras.callbacks import ModelCheckpoint # 数据集准备 # 从数据集中读取LINUX代码,进行分词、编码等预处理 # 构建LSTM模型 model = Sequential() model.add(LSTM(256, input_shape=(seq_length, vocab_size), return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(128)) model.add(Dropout(0.2)) model.add(Dense(vocab_size, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer='adam') # 设置模型检查点 filepath="weights-improvement-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min') callbacks_list = [checkpoint] # 训练模型 model.fit(X, y, epochs=20, batch_size=128, callbacks=callbacks_list) # 使用模型生成LINUX代码 # 通过提供一些关键字或者代码片段来启动模型生成,模型会根据输入的信息生成相应的LINUX代码。这段代码为什么运行报错NameError: name 'seq_length' is not defined,怎么修改
这段代码运行报错是因为变量 seq_length 没有定义,需要在代码中先定义 seq_length 变量。比如,你可以在数据集准备的代码中定义 seq_length,如下所示:
```python
seq_length = 100 # 这里可以根据实际情况进行调整
# 从数据集中读取LINUX代码,进行分词、编码等预处理
# ...
```
然后在构建LSTM模型时使用该变量,如下所示:
```python
# 构建LSTM模型
model = Sequential()
model.add(LSTM(256, input_shape=(seq_length, vocab_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(128))
model.add(Dropout(0.2))
model.add(Dense(vocab_size, activation='softmax'))
```
这样就可以解决该错误了。
def train(generator, discriminator, combined, network_input, network_output): epochs = 100 batch_size = 128 half_batch = int(batch_size / 2) filepath = "03weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_loss', save_best_only=True) for epoch in range(epochs): # 训练判别器 idx = np.random.randint(0, network_input.shape[0], half_batch) real_input = network_input[idx] real_output = network_output[idx] fake_output = generator.predict(np.random.rand(half_batch, 100, 1)) d_loss_real = discriminator.train_on_batch(real_input, real_output) d_loss_fake = discriminator.train_on_batch(fake_output, np.zeros((half_batch, 1))) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # 训练生成器 idx = np.random.randint(0, network_input.shape[0], batch_size) real_input = network_input[idx] real_output = network_output[idx] g_loss = combined.train_on_batch(real_input, real_output) # 输出训练结果 print('Epoch %d/%d: D loss: %f, G loss: %f' % (epoch + 1, epochs, d_loss, g_loss)) # 调用回调函数,保存模型参数 checkpoint.on_epoch_end(epoch, logs={'d_loss': d_loss, 'g_loss': g_loss})
这是一个用于训练生成对抗网络(GAN)的函数。其中使用了一个生成器(generator)、一个判别器(discriminator)和一个组合网络(combined)。GAN 由生成器和判别器两个网络组成,生成器用于生成与真实数据相似的假数据,判别器用于判断输入数据是真实数据还是生成器生成的假数据。在训练过程中,生成器和判别器交替训练,生成器的目标是尽可能骗过判别器,而判别器的目标是尽可能准确地判断数据的真假。这个函数的训练过程中,先对判别器进行训练,然后对生成器进行训练,每个 epoch 结束后保存模型参数。
阅读全文