def train(): notes = get_notes() # 得到所有不重复的音调数目 num_pitch = len(set(notes)) network_input, network_output = prepare_sequences(notes, num_pitch) model = network_model(network_input, num_pitch) # 输入,音符的数量,训练后的参数文件(训练的时候不用写) filepath = "02weights-{epoch:02d}-{loss:.4f}.hdf5" # 用checkpoint(检查点)文件在每一个Epoch结束时保存模型的参数 # 不怕训练过程中丢失模型参数,当对loss损失满意的时候可以随时停止训练 checkpoint = tf.keras.callbacks.ModelCheckpoint( filepath, # 保存参数文件的路径 monitor='loss', # 衡量的标准 verbose=0, # 不用冗余模式 save_best_only=True, # 最近出现的用monitor衡量的最好的参数不会被覆盖 mode='min' # 关注的是loss的最小值 ) callbacks_list = [checkpoint] # callback = tf.keras.callbacks.LearningRateScheduler(scheduler) # 用fit方法来训练模型 model.fit(network_input, network_output, epochs=50, batch_size=64, callbacks=callbacks_list) # 输入,标签(衡量预测结果的),轮数,一次迭代的样本数,回调 # model.save(filepath='./model',save_format='h5')

时间: 2024-04-27 10:22:35 浏览: 12
这段代码看起来是一个音乐生成模型的训练过程。它首先调用 `get_notes()` 函数来获取所有的音符序列,然后通过 `prepare_sequences()` 函数将这些音符序列处理成神经网络的输入和输出格式。接着,它定义了一个神经网络模型,并使用 `ModelCheckpoint()` 回调函数在每个 epoch 结束时保存模型的参数。最后,使用 `fit()` 方法来训练模型,其中包括训练数据、标签、训练轮数、批次大小和回调函数。在训练过程中,模型的参数会被保存在 `filepath` 路径下。
相关问题

def train_gan(generator, discriminator, gan, dataset, latent_dim, epochs): notes = get_notes() # 得到所有不重复的音调数目 num_pitch = len(set(notes)) network_input, network_output = prepare_sequences(notes, num_pitch) model = build_gan(network_input, num_pitch) # 输入,音符的数量,训练后的参数文件(训练的时候不用写) filepath = "03weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = tf.keras.callbacks.ModelCheckpoint( filepath, # 保存参数文件的路径 monitor='loss', # 衡量的标准 verbose=0, # 不用冗余模式 save_best_only=True, # 最近出现的用monitor衡量的最好的参数不会被覆盖 mode='min' # 关注的是loss的最小值 ) for epoch in range(epochs): for real_images in dataset: # 训练判别器 noise = tf.random.normal((real_images.shape[0], latent_dim)) fake_images = generator(noise) with tf.GradientTape() as tape: real_pred = discriminator(real_images) fake_pred = discriminator(fake_images) real_loss = loss_fn(tf.ones_like(real_pred), real_pred) fake_loss = loss_fn(tf.zeros_like(fake_pred), fake_pred) discriminator_loss = real_loss + fake_loss gradients = tape.gradient(discriminator_loss, discriminator.trainable_weights) discriminator_optimizer.apply_gradients(zip(gradients, discriminator.trainable_weights)) # 训练生成器 noise = tf.random.normal((real_images.shape[0], latent_dim)) with tf.GradientTape() as tape: fake_images = generator(noise) fake_pred = discriminator(fake_images) generator_loss = loss_fn(tf.ones_like(fake_pred), fake_pred) gradients = tape.gradient(generator_loss, generator.trainable_weights) generator_optimizer.apply_gradients(zip(gradients, generator.trainable_weights)) gan.fit(network_input, np.ones((network_input.shape[0], 1)), epochs=100, batch_size=64) # 每 10 个 epoch 打印一次损失函数值 if (epoch + 1) % 10 == 0: print("Epoch:", epoch + 1, "Generator Loss:", generator_loss.numpy(), "Discriminator Loss:", discriminator_loss.numpy())

这段代码看起来是一个 GAN 模型的训练过程。其中 generator 和 discriminator 分别是生成器和判别器,gan 是整个 GAN 模型,dataset 是训练数据,latent_dim 是生成器的输入维度,epochs 是训练的轮数。在训练过程中,首先准备训练数据并构建 GAN 模型,然后进行每轮训练。在每轮训练中,首先训练判别器,然后训练生成器,并使用生成器生成一些数据,然后计算生成器和判别器的损失,最后更新参数。在训练结束后,使用 GAN 模型生成新的数据。

def prepare_sequences(notes, num_pitch): # 从midi中读取的notes和所有音符的数量 """ 为神经网络提供好要训练的序列 """ sequence_length = 100 # 序列长度 # 得到所有不同音高的名字 pitch_names = sorted(set(item for item in notes)) # 把notes中的所有音符做集合操作,去掉重复的音,然后按照字母顺序排列 # 创建一个字典,用于映射 音高 和 整数 pitch_to_int = dict((pitch, num) for num, pitch in enumerate(pitch_names)) # 枚举到pitch_name中 # 创建神经网络的输入序列和输出序列 network_input = [] network_output = [] for i in range(0, len(notes) - sequence_length, 1): # 循环次数,步长为1 sequence_in = notes[i:i + sequence_length] # 每次输入100个序列,每隔长度1取下一组,例如:(0,100),(1,101),(50,150) sequence_out = notes[i + sequence_length] # 真实值,从100开始往后 network_input.append([pitch_to_int[char] for char in sequence_in]) # 列表生成式 # 把sequence_in中的每个字符转为整数(pitch_to_int[char])放到network_input network_output.append(pitch_to_int[sequence_out]) # 把sequence_out的一个字符转为整数 n_patterns = len(network_input) # 输入序列长度 # 将输入序列的形状转成神经网络模型可以接受的 network_input = np.reshape(network_input, (n_patterns, sequence_length, 1)) # 输入,要改成的形状 # 将输入标准化,归一化 network_input = network_input / float(num_pitch) # 将期望输出转换成{0,1}布尔矩阵,配合categorical_crossentrogy误差算法的使用 network_output = tf.keras.utils.to_categorical(network_output) # keras中的这个方法可以将一个向量传进去转成布尔矩阵,供交叉熵的计算 return network_input, network_output

这个函数的作用是为神经网络提供要训练的序列。其中,输入的 `notes` 是从 MIDI 文件中读取的音符,`num_pitch` 是所有不同音符的数量。函数将每个长度为 100 的序列作为输入,以该序列后面一个音符作为输出,创建神经网络的输入序列和输出序列。在创建输入序列时,函数使用字典将每个音符映射到一个整数,同时将输入序列进行了标准化。在创建输出序列时,函数使用了 `tf.keras.utils.to_categorical` 方法将期望输出转换成一个布尔矩阵,以供交叉熵的计算。最终,函数返回标准化后的输入序列和期望输出的布尔矩阵。

相关推荐

def convert_midi(fp, _seq_len): notes_list = [] stream = converter.parse(fp) partitions = instrument.partitionByInstrument(stream) # print([(part.getInstrument().instrumentName, len(part.flat.notes)) for part in partitions]) # 获取第一个小节(Measure)中的节拍数 _press_time_dict = defaultdict(list) partition = None for part_sub in partitions: if part_sub.getInstrument().instrumentName.lower() == 'piano' and len(part_sub.flat.notes) > 0: partition = part_sub continue if partition is None: return None, None for _note in partition.flat.notes: _duration = str(_note.duration.quarterLength) if isinstance(_note, NoteClass.Note): _press_time_dict[str(_note.offset)].append([str(_note.pitch), _duration]) notes_list.append(_note) if isinstance(_note, ChordClass.Chord): press_list = _press_time_dict[str(_note.offset)] notes_list.append(_note) for sub_note in _note.notes: press_list.append([str(sub_note.pitch), _duration]) if len(_press_time_dict) == _seq_len: break _items = list(_press_time_dict.items()) _items = sorted(_items, key=lambda t:float(Fraction(t[0])))[:_seq_len] if len(_items) < _seq_len: return None,None last_step = Fraction(0,1) notes = np.zeros(shape=(_seq_len,len(notes_vocab),len(durations_vocab)),dtype=np.float32) steps = np.zeros(shape=(_seq_len,len(offsets_vocab)),dtype=np.float32) for idx,(cur_step,entities) in enumerate(_items): cur_step = Fraction(cur_step) diff_step = str(cur_step - last_step) if diff_step in offsets_vocab: steps[idx,offsets_vocab.index(diff_step)] = 1. last_step = cur_step else: steps[idx,offsets_vocab.index('0')] = 1. for pitch,quarterLen in entities: notes[idx,notes_vocab.index(pitch),durations_vocab.index(quarterLen if quarterLen in durations_vocab else '0')] = 1. notes = notes.reshape((seq_len,-1)) inputs = np.concatenate([notes,steps],axis=-1) return inputs,notes_list

解释:target = self.survey.source.target collection = self.survey.source.collection '''Mesh''' # Conductivity in S/m (or resistivity in Ohm m) background_conductivity = 1e-6 air_conductivity = 1e-8 # Permeability in H/m background_permeability = mu_0 air_permeability = mu_0 dh = 0.1 # base cell width dom_width = 20.0 # domain width # num. base cells nbc = 2 ** int(np.round(np.log(dom_width / dh) / np.log(2.0))) # Define the base mesh h = [(dh, nbc)] mesh = TreeMesh([h, h, h], x0="CCC") # Mesh refinement near transmitters and receivers mesh = refine_tree_xyz( mesh, collection.receiver_location, octree_levels=[2, 4], method="radial", finalize=False ) # Refine core mesh region xp, yp, zp = np.meshgrid([-1.5, 1.5], [-1.5, 1.5], [-6, -4]) xyz = np.c_[mkvc(xp), mkvc(yp), mkvc(zp)] mesh = refine_tree_xyz(mesh, xyz, octree_levels=[0, 6], method="box", finalize=False) mesh.finalize() '''Maps''' # Find cells that are active in the forward modeling (cells below surface) ind_active = mesh.gridCC[:, 2] < 0 # Define mapping from model to active cells active_sigma_map = maps.InjectActiveCells(mesh, ind_active, air_conductivity) active_mu_map = maps.InjectActiveCells(mesh, ind_active, air_permeability) # Define model. Models in SimPEG are vector arrays N = int(ind_active.sum()) model = np.kron(np.ones((N, 1)), np.c_[background_conductivity, background_permeability]) ind_cylinder = self.getIndicesCylinder( [target.position[0], target.position[1], target.position[2]], target.radius, target.length, [target.pitch, target.roll], mesh.gridCC ) ind_cylinder = ind_cylinder[ind_active] model[ind_cylinder, :] = np.c_[target.conductivity, target.permeability] # Create model vector and wires model = mkvc(model) wire_map = maps.Wires(("sigma", N), ("mu", N)) # Use combo maps to map from model to mesh sigma_map = active_sigma_map * wire_map.sigma mu_map = active_mu_map * wire_map.mu '''Simulation''' simulation = fdem.simulation.Simulation3DMagneticFluxDensity( mesh, survey=self.survey.survey, sigmaMap=sigma_map, muMap=mu_map, Solver=Solver ) '''Predict''' # Compute predicted data for your model. dpred = simulation.dpred(model) dpred = dpred * 1e9 # Data are organized by frequency, transmitter location, then by receiver. # We had nFreq transmitters and each transmitter had 2 receivers (real and # imaginary component). So first we will pick out the real and imaginary # data bx_real = dpred[0: len(dpred): 6] bx_imag = dpred[1: len(dpred): 6] bx_total = np.sqrt(np.square(bx_real) + np.square(bx_imag)) by_real = dpred[2: len(dpred): 6] by_imag = dpred[3: len(dpred): 6] by_total = np.sqrt(np.square(by_real) + np.square(by_imag)) bz_real = dpred[4: len(dpred): 6] bz_imag = dpred[5: len(dpred): 6] bz_total = np.sqrt(np.square(bz_real) + np.square(bz_imag)) mag_data = np.c_[mkvc(bx_total), mkvc(by_total), mkvc(bz_total)] if collection.SNR is not None: mag_data = self.mag_data_add_noise(mag_data, collection.SNR) data = np.c_[collection.receiver_location, mag_data] # data = (data, ) return data

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。