Epoch 0 - Loss: 9.476979161208067 Epoch 100 - Loss: 0.024545824193223185 Epoch 200 - Loss: 0.021184098014391257 Epoch 300 - Loss: 0.02089679307162509 Epoch 400 - Loss: 0.020885579607749574 Epoch 500 - Loss: 0.020733045598121298 Epoch 600 - Loss: 0.02060065417354629 Epoch 700 - Loss: 0.020484426740295752 Epoch 800 - Loss: 0.020468246696794427 Epoch 900 - Loss: 0.02052095063072857 Epoch 1000 - Loss: 0.020845290944370858 Epoch 1100 - Loss: 0.021162356184471275 Epoch 1200 - Loss: 0.022379156066441162 Epoch 1300 - Loss: 0.023193955106248183 Epoch 1400 - Loss: 0.02377980721297183 Epoch 1500 - Loss: 0.025013970762987413 Epoch 1600 - Loss: 0.028737205979685463 Epoch 1700 - Loss: 0.031262776709102456 Epoch 1800 - Loss: 0.03312559376349572 Epoch 1900 - Loss: 0.027970166844037008学习率为0.0016
时间: 2024-04-05 15:29:30 浏览: 89
这是一个训练过程中损失函数随着训练次数(epoch)的变化曲线。损失函数在训练初期较大,随着训练次数的增加逐渐降低,最终趋于稳定。根据输出的损失函数变化曲线,可以初步判断模型是否收敛,以及是否存在过拟合或欠拟合等问题。在这个例子中,损失函数在训练初期下降较快,在训练中期达到最小值,后续略微上升,但整体变化不大,表明模型已经收敛。此外,可以看到学习率为0.0016,但无法确定该学习率是否合适,需要根据具体情况进行调整。
相关问题
Epoch 0 - Loss: 42.7033 Epoch 100 - Loss: 1.2580 Epoch 200 - Loss: 1.0588 Epoch 300 - Loss: 0.9649 Epoch 400 - Loss: 0.7881 Epoch 500 - Loss: 0.7288 Epoch 600 - Loss: 0.6999 Epoch 700 - Loss: 0.6862 Epoch 800 - Loss: 0.6809 Epoch 900 - Loss: 0.6776 Epoch 1000 - Loss: 0.6754 Epoch 1100 - Loss: 0.6734 Epoch 1200 - Loss: 0.6704 Epoch 1300 - Loss: 0.6683 Epoch 1400 - Loss: 0.6668 Epoch 1500 - Loss: 0.6476 Epoch 1600 - Loss: 0.6442 Epoch 1700 - Loss: 0.6431 Epoch 1800 - Loss: 0.6423 Epoch 1900 - Loss: 0.6418 Epoch 2000 - Loss: 0.6411 Epoch 2100 - Loss: 0.6404 Epoch 2200 - Loss: 0.6399 Epoch 2300 - Loss: 0.6396 Epoch 2400 - Loss: 0.6393 Epoch 2500 - Loss: 0.6392 Epoch 2600 - Loss: 0.6390 Epoch 2700 - Loss: 0.6388 Epoch 2800 - Loss: 0.6386 Epoch 2900 - Loss: 0.6385 Test Loss: 1.1399
这也是一个训练神经网络的过程,每个Epoch代表一次完整的训练循环。Loss表示模型在训练过程中的误差,随着Epoch的增加,Loss逐渐减小,这说明模型在学习中逐渐优化。最终的Test Loss为1.1399,表示模型在测试集上的误差较小,但是相对于第一个例子,误差较大,这可能是因为模型的复杂度不够,或者数据集的质量不够高。需要根据具体任务和数据集来评估模型的表现。
Epoch 0 - Loss: 29.517078385136386 Epoch 100 - Loss: 0.020163969858276648 Epoch 200 - Loss: 0.020163969858276648 Epoch 300 - Loss: 0.020163969858276648 Epoch 400 - Loss: 0.020163969858276648 Epoch 500 - Loss: 0.020163969858276648 Epoch 600 - Loss: 0.020163969858276648 Epoch 700 - Loss: 0.020163969858276648 Epoch 800 - Loss: 0.020163969858276648 Epoch 900 - Loss: 0.020163969858276648 Epoch 1000 - Loss: 0.020163969858276648 Epoch 1100 - Loss: 0.020163969858276648 Epoch 1200 - Loss: 0.020163969858276648 Epoch 1300 - Loss: 0.020163969858276648 Epoch 1400 - Loss: 0.020163969858276648 Epoch 1500 - Loss: 0.020163969858276648 Epoch 1600 - Loss: 0.020163969858276648 Epoch 1700 - Loss: 0.020163969858276648 Epoch 1800 - Loss: 0.020163969858276648 Epoch 1900 - Loss: 0.020163969858276648
这是一个训练神经网络的过程,输出的信息包括每个 epoch 的训练损失值。损失值是网络预测结果与真实值之间的差异程度,损失值越小,表示网络预测结果越接近真实值。在这个例子中,可以看到随着 epoch 的增加,损失值逐渐减小,表明神经网络的预测能力不断提高,最终收敛于一个较小的值。这说明网络已经训练好了,可以使用它进行预测了。
阅读全文