Epoch 0 - Loss: 17.447988424087786 Epoch 100 - Loss: 0.023916610656287463 Epoch 200 - Loss: 0.02184260371850391 Epoch 300 - Loss: 0.020971374224397807 Epoch 400 - Loss: 0.020587030179611075 Epoch 500 - Loss: 0.02889814686148146 Epoch 600 - Loss: 0.03503971164681789 Epoch 700 - Loss: 0.048237446625428226 Epoch 800 - Loss: 0.05521873767164688 Epoch 900 - Loss: 0.06508777169211488 Epoch 1000 - Loss: 0.12951764312366357 Epoch 1100 - Loss: 0.13758563989035588 Epoch 1200 - Loss: 0.12351779101371296 Epoch 1300 - Loss: 0.09382921555908834 Epoch 1400 - Loss: 0.08508630712682239 Epoch 1500 - Loss: 0.08412031084209541 Epoch 1600 - Loss: 0.07105566806243635 Epoch 1700 - Loss: 0.0679905777910967 Epoch 1800 - Loss: 0.06513494877104614 Epoch 1900 - Loss: 0.06352595888541843
时间: 2024-04-05 10:34:37 浏览: 72
Epoch200-Total_Loss2.0690-Val_Loss2.3955.pth
5星 · 资源好评率100%
这是一个训练神经网络的过程输出,其中包含了每一个 epoch 的训练损失(loss)。训练损失是用来评估模型预测结果与实际结果之间的差异的指标,通常采用均方误差(mean squared error)或交叉熵(cross-entropy)等损失函数来计算。
从输出中可以看出,随着训练次数的增加,模型的训练损失逐渐减小,这表明模型在逐渐学习到更好的表示方法,可以更准确地预测输出。在这个例子中,训练损失在前几个 epoch 中下降得比较快,但后面开始趋于稳定,这可能表明模型已经收敛到一个局部最优解。
需要注意的是,训练损失并不一定能够完全反映模型的性能。为了更准确地评估模型的性能,需要在训练结束后使用测试数据进行评估。
阅读全文