max>=abs(min)
时间: 2024-04-09 09:30:17 浏览: 119
对于一个信号的最大值(max)和最小值(min),如果最大值的绝对值大于等于最小值的绝对值,即max >= abs(min),那么可以得出以下结论:
1. 信号的峰值(peak value)即为最大值(max),因为最大值已经包含了信号的最大振幅。
2. 信号的峰峰值(peak-to-peak value)可以通过计算最大值(max)和最小值(min)之差得到,即峰峰值 = max - min。
所以,在这种情况下,你可以直接将最大值作为信号的峰值,并计算峰峰值为最大值减去最小值。这个结论适用于具有对称性的信号或具有零偏移的信号。
需要注意的是,以上结论仅在max >= abs(min)时成立。如果max < abs(min),则需要重新评估信号的峰值和峰峰值的计算方法。
相关问题
优化这段代码:function [Rp,As] = freqzn(num,den,wp,ws,Rp,As,ftype) switch ftype case 1 % 低通 [H, w] = freqz(num, den); H = abs(H); wp_index = find(w >= wp, 1); ws_index = find(w >= ws, 1); Rp = -20*log10(H(wp_index)); As = -20*log10(max(H(ws_index:end))); case 2 % 高通 [H, w] = freqz(num, den); H = abs(H); wp_index = find(w >= wp, 1); ws_index = find(w >= ws, 1); Rp = -20*log10(H(ws_index)); As = -20*log10(max(H(1:wp_index))); case 3 % 带通 [H, w] = freqz(num, den); H = abs(H); wp_index1 = find(w >= wp(1), 1); wp_index2 = find(w >= wp(2), 1); ws_index1 = find(w >= ws(1), 1); ws_index2 = find(w >= ws(2), 1); Rp = -20*log10(min(H(wp_index1:wp_index2))); As = -20*log10(max([max(H(1:ws_index1)), max(H(ws_index2:end))])); case 4 % 带阻 [H, w] = freqz(num, den); H = abs(H); wp_index1 = find(w >= wp(1), 1); wp_index2 = find(w >= wp(2), 1); ws_index1 = find(w >= ws(1), 1); ws_index2 = find(w >= ws(2), 1); Rp = -20*log10(max(H(wp_index1:wp_index2))); As = -20*log10(max([max(H(1:ws_index1)), max(H(ws_index2:end))])); otherwise error('Unsupported filter type!'); end %绘制滤波器的幅频特性 [H, w] = freqz(num, den); H = abs(H); figure; plot(w/pi, H, 'b', 'linewidth', 1.5); hold on; plot([0, wp]/pi, [1, 1], 'r--', 'linewidth', 1.5); plot([ws, 1]/pi, [0, 0], 'r--', 'linewidth', 1.5); if ftype == 3 || ftype == 4 plot([wp(1), wp(1)]/pi, [0, 1], 'r--', 'linewidth', 1.5); plot([wp(2), wp(2)]/pi, [0, 1], 'r--', 'linewidth', 1.5); end hold off; grid on; xlabel('归一化频率/\pi'); ylabel('幅值'); title('数字滤波器幅频特性'); end
function [Rp,As] = freqzn(num,den,wp,ws,Rp,As,ftype)
[H, w] = freqz(num, den); % 计算频率响应
H = abs(H); % 取频率响应的幅值
wp_index = find(w >= wp, 1); % 找到截止频率对应的下标
ws_index = find(w >= ws, 1);
switch ftype
case 1 % 低通
Rp = -20*log10(H(wp_index)); % 计算通带衰减
As = -20*log10(max(H(ws_index:end))); % 计算阻带衰减
case 2 % 高通
Rp = -20*log10(H(ws_index));
As = -20*log10(max(H(1:wp_index)));
case 3 % 带通
wp_index2 = find(w >= wp(2), 1); % 找到第二个截止频率对应的下标
Rp = -20*log10(min(H(wp_index:wp_index2)));
As = -20*log10(max([max(H(1:ws_index)), max(H(wp_index2:end))])); % 注意阻带衰减的计算
case 4 % 带阻
wp_index2 = find(w >= wp(2), 1);
Rp = -20*log10(max(H(wp_index:wp_index2)));
As = -20*log10(max([max(H(1:ws_index)), max(H(wp_index2:end))]));
otherwise
error('Unsupported filter type!');
end
%绘制滤波器的幅频特性
figure;
plot(w/pi, H, 'b', 'linewidth', 1.5);
hold on;
plot([0, wp]/pi, [1, 1], 'r--', 'linewidth', 1.5);
plot([ws, 1]/pi, [0, 0], 'r--', 'linewidth', 1.5);
if ftype == 3 || ftype == 4
plot([wp(1), wp(1)]/pi, [0, 1], 'r--', 'linewidth', 1.5);
plot([wp(2), wp(2)]/pi, [0, 1], 'r--', 'linewidth', 1.5);
end
hold off;
grid on;
xlabel('归一化频率/\pi');
ylabel('幅值');
title('数字滤波器幅频特性');
end
优化代码,GPU加速 def temp_condtion(df, temp_upper, temp_low): return ((df['max_temp']<=temp_upper) & (df['min_temp']>=temp_low)) def soc_condtion(df, soc_upper, soc_low): return ((df['bat_module_soc_00']<=temp_upper) & (df['bat_module_soc_00']>=temp_low)) def current_condtion(df, min_curr, batt_state): if batt_state=='charge': return (df['bat_module_current_00'].abs()>=min_curr) & (df['bat_module_current_00']>=0) elif batt_state=="discharge": return (df['bat_module_current_00'].abs()>=min_curr) & (df['bat_module_current_00']<=0 # 板端运行逻辑 data = {'realtime':[], 'cell_volt':[], 'total_current':[]} index = [] # (total_current[j]<=0) for i in tqdm(df.index[temp_condtion(df, temp_upper, temp_low) & soc_condtion(df, soc_upper, soc_low) & current_condtion(df, min_curr, 'discharge')]: n = 0 k = i while (n <= data_point) & (i <= len(df)-100): idx_list = [] idx_list.append(i) for j in np.arange(i+1, len(df)): if ((sendtime.iloc[j]-sendtime.iloc[k]).total_seconds()>=time_interval): break elif (df['max_temp'].iloc[j]<=temp_upper) & (df['min_temp'].iloc[j]>=temp_low) & \ (df['bat_module_soc_00'].iloc[j]>=soc_low) & (df['bat_module_soc_00'].iloc[j]<=soc_upper) & \ ((sendtime[j]-sendtime[i]).total_seconds()>=sample_interval) & \ ((sendtime.iloc[j]-sendtime.iloc[k]).total_seconds()<=time_interval) & \ (np.abs(total_current[j]-total_current[i])>=curr_interval) & (np.abs(soc[j]-soc[i])<=soc_interval) & \ (np.abs(total_current[j])>=min_curr): n+=1 idx_list.append(j) i = j if ((sendtime.iloc[j]-sendtime.iloc[k]).total_seconds()>=time_interval): break if len(idx_list) >= data_point: print(idx_list) index.append(idx_list)
There are a few ways to optimize this code and potentially utilize GPU acceleration:
1. Use Numba: Numba is a just-in-time compiler for Python that can compile Python code to run on GPUs. This can significantly speed up code execution. You can decorate your functions with `@jit` to have them compiled by Numba.
2. Use Pandas' `query` method: Rather than using boolean indexing, you can use the `query` method of a Pandas DataFrame to filter rows based on conditions. For example, you can replace `temp_condition(df, temp_upper, temp_low)` with `df.query("max_temp <= @temp_upper and min_temp >= @temp_low")`.
3. Use vectorized operations: Instead of looping through each row of the DataFrame, you can use vectorized operations to apply your conditions across the entire DataFrame. For example, you can replace `df['bat_module_current_00'].abs()>=min_curr` with `np.abs(df['bat_module_current_00'])>=min_curr`.
4. Use Dask: Dask is a parallel computing library that can distribute computations across multiple CPUs or GPUs. You can use Dask to parallelize your code and potentially speed up execution. However, this may require significant changes to your code structure.
阅读全文