# beta进行傅里叶变换 plt.figure() beta_fft = fft.fft(beta) f1 = fft.fftfreq(len(beta),t[1]-t[0]) f_beta = f1[f1 >= 0] A_beta_fft = 2/len(beta)*abs(beta_fft[f1 >= 0]) A_beta_fft[0] = A_beta_fft[0]/2 plt.plot(f_beta,A_beta_fft,c='orangered') plt.xlim(0.1,10) plt.grid(linestyle=':') plt.show()
时间: 2024-03-04 10:53:44 浏览: 159
fft 傅立叶变换
这段代码是使用 Python 中的 `fft` 函数对 `beta` 信号进行傅里叶变换,并将变换结果绘制成频谱图。
首先,`fft.fft` 函数对信号 `beta` 进行傅里叶变换,得到变换后的结果 `beta_fft`。
接着,使用 `fft.fftfreq` 函数生成频率轴 `f1`,并将 `f1` 中大于等于 0 的部分提取出来,赋值给变量 `f_beta`。
然后,使用 `abs` 函数和 `2/len(beta)` 对 `beta_fft` 进行幅值归一化,并将归一化后的结果的第一个元素除以 2(因为直流分量只有一半)。
最后,使用 `plt.plot` 函数将归一化后的幅值 `A_beta_fft` 与频率轴 `f_beta` 绘制成频谱图,并使用 `plt.xlim` 函数限制 x 轴的显示范围在 0.1 Hz 到 10 Hz 之间,使用 `plt.grid` 函数添加网格线,并使用 `plt.show` 函数显示图像。
阅读全文