写一个小波包分解的python代码
时间: 2023-09-15 20:05:18 浏览: 121
### 回答1:
def wavelet_decomposition(signal, wavelet, mode='symmetric', level=None):
# Imports
import numpy as np
from scipy import signal
from scipy.fftpack import fft, ifft # Set n as length of the signal
n = signal.size # Construct wavelet
if wavelet == 'dmey':
coeffs = np.array([-0.088388347, 0.088388347, 0.70710678, 0.70710678, 0.088388347, -0.088388347])
else:
coeffs = signal.wavelets.daub(wavelet) # Determine the level of decomposition
if level is None:
level = int(np.log2(n)) # Initialize output signal
a = signal
d = np.zeros((level,n)) # Loop over levels
for i in range(level):
# Construct high-pass and low-pass filters
h = signal.convolve(coeffs, a, mode=mode)/np.sqrt(2)
l = signal.convolve(coeffs[::-1], a, mode=mode)/np.sqrt(2) # Append approximation and detail coefficients
a = h[:n]
d[i] = l[:n] # Return approximation and detail coefficients
return a, d
### 回答2:
小波包分解是指将信号进行多层次的小波包分解,具体的代码如下:
```python
import numpy as np
import pywt
# 定义小波包分解函数
def wavelet_packet_decomposition(signal, wavelet, level):
coeffs = pywt.wavedec(signal, wavelet, level=level) # 进行小波分解
return coeffs
# 生成测试信号
signal = np.random.rand(1024) # 生成长度为1024的随机信号
# 设置小波类型和分解层数
wavelet = 'db4' # 选择db4小波
level = 3 # 进行3层分解
# 进行小波包分解
coeffs = wavelet_packet_decomposition(signal, wavelet, level)
# 输出分解后的结果
print("小波包分解系数:")
for i, coeff in enumerate(coeffs):
print("Level {}: {}".format(i, len(coeff)))
```
以上代码通过pywt库实现了小波包分解的过程。首先创建wavelet_packet_decomposition函数,调用`pywt.wavedec()`函数进行小波分解,将信号进行多层次的分解。然后调用该函数,传入信号、小波类型和分解层数,得到小波包分解系数。最后打印输出每个层次的分解系数的长度。
### 回答3:
小波包分解是一种将信号逐级分解为多个子带的方法。以下是一个用Python实现小波包分解的代码示例:
```python
import pywt
def wavelet_packet_decomposition(signal, wavelet, level):
coeffs = []
# 小波包分解
wp = pywt.WaveletPacket(data=signal, wavelet=wavelet, mode='symmetric', maxlevel=level)
# 遍历所有节点
for node in wp.get_level(level, 'natural').get_all_nodes():
coeffs.append(node.data)
return coeffs
# 示例使用
# 假设有一个长度为n的信号signal
signal = [1, 2, 3, 4, 5, 6, 7, 8]
wavelet = 'db4' # 小波变换使用的小波函数
level = pywt.dwt_max_level(len(signal), wavelet) # 计算信号分解的最大级别
coeffs = wavelet_packet_decomposition(signal, wavelet, level)
# 打印各个子带的系数
for i, coeff in enumerate(coeffs):
print(f'Level: {level}, Subband: {i+1}, Coefficients: {coeff}')
```
此代码使用`pywt`库实现了小波包分解。通过传入信号、波形和级别参数,函数`wavelet_packet_decomposition`会返回一个列表,包含信号在每个子带中的系数。然后我们可以逐级遍历这些系数并进行相应的处理。
阅读全文