stm32f103c8t6与rcc522接线
时间: 2023-07-25 20:03:51 浏览: 157
以下是stm32f103c8t6与rcc522的接线方式:
RCC522模块 STM32F103C8T6开发板
SDA PB7
SCK PB6
MOSI PB5
MISO PB4
IRQ 不接
GND GND
RST PB8
3.3V 3.3V
需要注意的是,接线时要注意引脚的对应关系,以及共地连接。同时,需要在代码中配置相应的引脚为SPI模式,并配置对应的SPI参数。
相关问题
rcc522与stm32f103c8t6接线
根据引用和引用,在将RC522与STM32F103C8T6进行接线时,需要进行以下步骤和注意事项:
1. 首先,根据引用所提及的教学步骤,准备好RC522.c和RC522.h代码。
2. 接下来,查看引用中的硬件部分和接线部分,确保你有一块STM32F103C8T6开发板和RFID-RC522识别模块。
3. 将RFID-RC522模块与STM32F103C8T6进行接线,具体接线方式如下:
- 将RFID-RC522模块的SDA引脚连接到STM32F103C8T6的SPI1的MOSI引脚。
- 将RFID-RC522模块的SCK引脚连接到STM32F103C8T6的SPI1的SCK引脚。
- 将RFID-RC522模块的MISO引脚连接到STM32F103C8T6的SPI1的MISO引脚。
- 将RFID-RC522模块的NSS引脚连接到STM32F103C8T6的SPI1的NSS引脚。
- 将RFID-RC522模块的RST引脚连接到STM32F103C8T6的任意一个GPIO引脚。
- 将RFID-RC522模块的IRQ引脚不连接。
4. 这样,RC522与STM32F103C8T6的接线就完成了。
总结:
根据引用和引用中提供的相关信息,将RC522与STM32F103C8T6进行接线时,需要按照引脚对应关系进行连接。这样,你就可以在STM32F103C8T6上使用RC522模块来实现对IC卡的增删改查功能了。请确保按照引用提供的接线方式进行连接,并参考相关代码进行编程。
基于stm32f103c8t6超声波测距源码及接线(已调)_stm32f103c8t6例程_stm32_超声波_s
### 回答1:
stm32f103c8t6是一款常用的单片机开发板,可以用来实现超声波测距功能。超声波测距是利用超声波的传播速度来测量距离的一种技术。
首先,我们需要连接超声波传感器和stm32f103c8t6开发板。超声波传感器一般有两个引脚:Trig和Echo。Trig用于发送超声波信号,Echo用于接收超声波信号。
接线时,将Trig引脚连接到stm32f103c8t6开发板上的一个GPIO引脚,例如PA0。将Echo引脚连接到stm32f103c8t6开发板上的另一个GPIO引脚,例如PA1。
接线完成后,我们可以开始编写源码来实现超声波测距功能。以下是一个简单的示例代码:
#include "stm32f10x.h"
// 定义Trig引脚所在的GPIO端口和引脚号
#define TRIG_GPIO GPIOA
#define TRIG_PIN GPIO_Pin_0
// 定义Echo引脚所在的GPIO端口和引脚号
#define ECHO_GPIO GPIOA
#define ECHO_PIN GPIO_Pin_1
// 声明超声波测距函数
float measureDistance();
int main(void)
{
// 初始化GPIO
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = TRIG_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(TRIG_GPIO, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = ECHO_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(ECHO_GPIO, &GPIO_InitStructure);
while(1)
{
float distance = measureDistance();
// 在这里处理测量到的距离数据
delay_ms(500); // 延时500毫秒
}
}
// 超声波测距函数
float measureDistance()
{
// 发送一个10us的高电平脉冲
GPIO_SetBits(TRIG_GPIO, TRIG_PIN);
delay_us(10);
GPIO_ResetBits(TRIG_GPIO, TRIG_PIN);
// 等待Echo引脚变为高电平
while (GPIO_ReadInputDataBit(ECHO_GPIO, ECHO_PIN) == 0);
// 开始计时
uint32_t start_time = TIM3->CNT;
// 等待Echo引脚变为低电平
while(GPIO_ReadInputDataBit(ECHO_GPIO, ECHO_PIN) == 1);
// 结束计时
uint32_t end_time = TIM3->CNT;
// 计算超声波传播时间
uint32_t duration = end_time - start_time;
// 计算距离
float distance = duration * 0.034 / 2;
return distance;
}
上述代码中,我们首先通过“RCC_APB2PeriphClockCmd”函数使能GPIOA的时钟。然后分别对Trig和Echo引脚进行初始化,将Trig引脚设置为输出模式,将Echo引脚设置为输入上拉模式。
在主函数中,我们使用一个无限循环实现连续测量。调用“measureDistance”函数测量距离,并将距离数据保存在变量“distance”中。我们可以在需要的地方处理测量到的距离数据。
在“measureDistance”函数中,我们首先发送一个10us的高电平脉冲,并使用延时函数等待Echo引脚变为高电平。然后开始计时,继续等待Echo引脚变为低电平,结束计时。通过计算传播时间,可以计算出距离,并将结果返回。
需要注意的是,示例代码中使用了延时函数“delay_ms”和“delay_us”,这些函数需要根据实际情况进行定义。同时,还需注意超声波传感器的工作电压和合适的发射脉冲宽度,以及引脚的对应关系和配置等。
希望以上回答对您有所帮助,如有其他问题,欢迎继续咨询。
### 回答2:
stm32f103c8t6是一款32位微控制器,常用于嵌入式系统开发。超声波测距是一种基于声波的测量方法,常用于距离测量等应用场景。以下是基于stm32f103c8t6的超声波测距源码及接线的解释。
首先,连接硬件部分。根据超声波传感器的引脚定义,将其连接到stm32f103c8t6开发板上。通常,超声波传感器有四个引脚:Vcc(供电)、GND(地)、Trig(触发)、Echo(回响)。将超声波传感器的Vcc引脚连接到3.3V电源,将GND引脚连接到GND,将Trig引脚连接到开发板的一个GPIO引脚,将Echo引脚连接到另一个GPIO引脚。
然后,编写源码。使用stm32固件库或CubeMX等工具创建一个新的stm32项目。在源码中,首先需要初始化GPIO引脚,将Trig引脚设置为输出模式,将Echo引脚设置为输入模式。然后,通过GPIO操作向Trig引脚发送一个短脉冲信号,触发超声波传感器发送声波。接着,通过计时器或延时函数等方法测量Echo引脚的高电平持续时间,以此计算出回响时间。
最后,通过一定的公式和算法,将回响时间转换为距离值。通常,回响时间与距离呈线性关系,通过一些实验数据可以校准转换系数。最终,将距离值显示在液晶屏或通过串口输出等方式。
需要注意的是,在将Trig引脚设置为高电平触发超声波传感器之前,需要保证Trig引脚为低电平状态一段时间,以确保传感器处于稳定状态。
综上所述,基于stm32f103c8t6的超声波测距源码及接线主要涉及硬件的连接和源码的编写。通过初始化GPIO引脚、发送触发脉冲、测量回响时间、转换距离值等步骤,可以实现超声波测距功能。
### 回答3:
基于STM32F103C8T6的超声波测距源码及接线(已调)如下:
首先,我们需要将超声波传感器与STM32F103C8T6微控制器进行正确的接线。以下是接线步骤:
1. 将超声波传感器的Trig引脚连接到STM32F103C8T6微控制器的任意一个GPIO引脚,例如GPIOA的第9号引脚。
2. 将超声波传感器的Echo引脚连接到STM32F103C8T6微控制器的任意一个GPIO引脚,例如GPIOA的第10号引脚。
3. 将超声波传感器的Vcc引脚连接到STM32F103C8T6微控制器的3.3V电源。
4. 将超声波传感器的GND引脚连接到STM32F103C8T6微控制器的地线。
接下来,我们给出一个基于STM32F103C8T6的超声波测距源码的例程供参考:
```c
#include "stm32f10x.h"
#include "delay.h"
#define Trig_Pin GPIO_Pin_9
#define Echo_Pin GPIO_Pin_10
#define Trig_Port GPIOA
#define Echo_Port GPIOA
// 配置超声波引脚
void Ultrasonic_Init()
{
GPIO_InitTypeDef GPIO_InitStruct;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStruct.GPIO_Pin = Trig_Pin;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(Trig_Port, &GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = Echo_Pin;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(Echo_Port, &GPIO_InitStruct);
}
// 发送超声波测距信号
float Ultrasonic_Detect()
{
uint32_t timing;
float distance;
GPIO_SetBits(Trig_Port, Trig_Pin);
delay_us(10);
GPIO_ResetBits(Trig_Port, Trig_Pin);
while (GPIO_ReadInputDataBit(Echo_Port, Echo_Pin) == 0);
TIM_Cmd(TIM2, ENABLE);
TIM_SetCounter(TIM2, 0);
while (GPIO_ReadInputDataBit(Echo_Port, Echo_Pin) == 1);
timing = TIM_GetCounter(TIM2);
distance = (float)timing * 0.0343 / 2;
TIM_Cmd(TIM2, DISABLE);
return distance;
}
int main()
{
Ultrasonic_Init();
while (1)
{
float distance = Ultrasonic_Detect();
// 将测距结果进行处理和应用
delay_ms(100);
}
}
```
这段代码首先定义了超声波传感器的引脚和端口,然后在初始化中配置了引脚的输入输出模式。
在主函数中,我们使用`Ultrasonic_Init()`函数初始化超声波传感器,并在主循环中调用`Ultrasonic_Detect()`函数进行测距。测距结果可以在后续进行处理和应用。
需要注意的是,以上代码仅提供一个基本的示例,具体的电路和应用需根据实际情况进行调整和修改。同时,因为涉及到定时器的使用,需要在项目中配置和初始化相应的定时器。这里以TIM2为例,具体的配置可根据需要进行调整。
希望以上回答对您有所帮助!
阅读全文